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The projector-augmented wave (PAW) method proposed bgtBlis an all-electron ab initio approach to
electronic structure calculations. Using a local basis set expansion, the LSDA wave function is mapped onto
a smooth image which can be treated with a plane wave basis set of a practical size. We discuss our
implementation of this approach and its application to the calculation of the bonding properties of several
second row and transition metal diatomic molecules. Comparisons are made between PAW and other methods.
Our results for binding energy, bond length, and vibration frequency indicate that the accuracy of the PAW
method is similar to that of local basis and finite grid methods. The convergence with respect to number of
plane waves is sufficient that practical calculations are possible even for systems which would be difficult to
treat with pseudopotential methods. For example, for thenld Fe dimers the bonding energy is converged

with a 60 Ry cutoff in the plane wave expansion. The local basis contributions that appear in the theory can
be precomputed, and therefore, the overhead typically associated with the local basis method is greatly reduced.
For a fixed size of the plane wave basis set the execution times of the PAW method are similar to those of
plane wave pseudopotential methods.

1. Introduction The densityng(r) = Yani(r — R?) is the sum of the core charge
densities, andiz(r) = > 2Z%0(r — R?) represents the sum of the

Ab initio electronic structure calculations in material science - R
ion charge densities over the atomic sisAlthough not

are making increasingly important contributions to the inter-
pretation of experimental data and are providing new insights ! indicated explicitly, the constant infinite ion self energy term
into processes which are otherwise inaccessible to IaboratoryIn (1.3) is assumed to be subtracted out. The total energy and
probes. Generally material problems are sufficiently complicated € density of the ground state can be found by minimizing
that the preferred method of electronic structure calculation is E[{l,p"}] W't_h respect tot¥'y(r), SL.JbJeCt.. to orthogongllty con-
based on density-functional theory (DFT) within the local spin Str@ints. This leads to the effective Stilirger equation:

density approximation (LSDA): The central quantity in this
method is the energy function&[{W,}], which for a typical
molecular system is given by

HW =e®0 (i=1,...N) (1.5)

where HamiltoniarH is given by

EfWYH=T+W+E, (1.1)
1 n(r') +ny(r') —n(r) |
whereT is a kinetic energy, H(r) = — > 2 f ] dr' + v, (r)
(1.6)
T= Zf - _V D (1.2) Here, v(r) represents the exchangeorrelation potential:
W denotes the Hartree energy, 1.7
W=
(n(r) + ng(r) = nz(N)(n(r') + ng(r') —ny(r)) | Since the exchangecorrelation potential is a function of the
2 f f Ir—r| drdr electron density, the single-electron equations (1.5) are coupled
(1.3) and require a self-consistent solution. In practice, the solution
of (1.5) proceeds by expandingn(r) in terms of a predeter-
Exc is the exchangecorrelation energy, mined finite set of basis functio{g.(r)}
Exe = J cn(r) + nn)(n(r) + n(r))dr - (1.4) W)= Cratal) (1.8)
o
Here{W,} represent a set of auxiliary single particle orbitals,
also known as KohnSham orbitals. The valence density) The traditional choice fofy«(r)} in chemical applications is a
is defined as set local basis functions centered around the atoms. Common
examples are the numerical solutions to the corresponding
n(r)= 21‘,1|‘Ifn(r)|2 atomic problem¥ or various Gaussian functiofisThe local
n basis approach provides an efficient expansion of the wave
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function. However, it also requires evaluation of many multi- its applications to some systems (e.g;, Fe, etc.) that are
center integrals, which makes these methods difficult to apply difficult to treat with norm-conserving pseudopotential methods.
to large systems even for a single geometric configuration. This Our comparison of the results of this method to norm-conserving
prevents an efficient application of the local basis set methods pseudopotential calculations and local basis set calculations
in dynamical problems, such as chemical reactions in condensedndicates the following: (i) The accuracy of the PAW is similar

phases, position optimization in large molecules, etc. to the accuracy of a local basis calculation. (ii) The convergence
A different method of solution of the LSDA equations, in  with respect to the plane wave basis set leads to practical
which the basigyq(r)} consists of the plane waves, calculations even for difficult systems (F, transition metals). (iii)
, The bonding properties in transition metals are described

21) = g Kt (1.9 correctly for a wide range of bond distances, from diatomic

molecules to solid&15 (iv) The accuracy of the calculations
has been used in condensed matter physics. The main obstaclean be systematically improved by expanding the local repre-
in this approach is that the accurate representation of the quicklysentation. (v) The method is robust with respect to the choice
varying valence wave functions in regions near the nucleus of the local basis set. (vi) Local basis set terms in the
requires an impracticably large number of plane waves. The Hamiltonian are one center and can be precomputed so that
problem can be partially alleviated by the introduction of execution times are similar to the plane wave pseudopotential
pseudopotential®, where the deep Coulomb potential, the methods.
second term of the right of (1.6), is replaced by a shallow smooth
norm-conserving pseudopotential. The pseudopotential reduce®. Description of PAW Method
the number of nodes in the valence wave functions and relaxes

the requirements on the size of the plane wave basis. Theequation (1.5) for a generic atomic cluster system. It can be

gvallablllty of fast Fourier tra}nsform_atlong (FFT) algorithms gnd observed that its solutions, the wave functi¢d%,}, share the
independence of the atomic positions in plane wave basis set

. . .~_~common behavior: they rapidly oscillate in the neighborhood
methods proves to be major advantage in the dynamical : . - . .
L h of the atomic nuclei and become fairly flat in the region between
problems. Ab initio molecular dynamics methé&tisuch as the

- : . . the atoms. This suggests the division of the whole sggade
Car—Parrinelo methd) allow a rapid update of the solution two distinct regions: the collection @onaerlappingspherical
as the geometry of the system evolves.

The major limiting factor in plane wave methods remains regions around each atom: atomic spheres reglg®,, and

the availability of smooth and transferable pseudopotentials. Thethe remainder, the interstitial regic,:
generation of a smooth pseudopotential is especially problematic 0=0 +U.0Q
for the elements that possess strongly localized nodeless valence ! ara
orbitals. These are, for example, 2p states in O, F, 3d states in
transition metals, etc. Strictly speaking the replacement of the
actual potential with the pseudopotential should only take place
close to the nucleus. However, the small size of the replacemen
volume results in steep pseudopotential if norm conservation
is retainec?® In practice, one is often forced to “soften” the
pseudopotential, i.e., extend it all the way into the bonding
region and sometimes even into the neighboring atom. This
compromises the transferability of the pseudopotential and can ¥ =YW 2.1)
lead to undesired side effects. Finally, the introduction of the " :
pseudopotential also results in the loss of the all-electron
information which is necessary for some applications.

Having discussed pros and cons of the local and plane wave
basis sets it is natural to conclude that a mixed basis set might
offer the best possible approach to the solution of (1.5). This
has been recognized for some time in computational solid state
and a number methods have been develdpétkally, a mixed - ikr
basis method should not require an introduction of the pseudo- W)= Zm c(k) e (2.3)
potential since the rapid variation of the valence orbitals can Ik <Hnax
be described via local basis functions. On the other hand, it has_l_h first . i that the task of solvina ‘Skh
to be efficient enough to allow an implementation in dynamical . € first requirement ensures that the task of solving <Ehro
problems. An important breakthrough in this area has been made " 9¢" equation (1.5) can be equwalently reformulated in terms
with the introduction of the projector-augmented wave method of Wy(r), whereas the second requirement allows the entire

(PAW) by Blchl.” In the center of this method is a transforma- pr%‘;}?ééﬂ;i?ﬁgﬂg@ﬂ (l;;lnrg :Poemp;ani?/evx@/ erbafcl)ieS:(5§
tion that maps the solutions to (1.5) to a smoother functions n(r) 9 n(r) p

that can be expanded in plane waves. The rapidly varying as follows. For each atom, we define a finite set of local basis

. a ) :
remainders of the wave functions instead of being discarded asfunctions {¢,} that is expected to accurately describe the

in pseudopotential methods are now treated with the help of 0Scillating behavior of the relevant wave functiéfy(r) within
the local basis set. Unlike the pure local basis methods, thethe corresponding atomic sphere. Associated ifff} we
evaluation of the multicenter integrals is avoided in PAW introduce a set of localized projector functiofys} such that
method. This allows for greater flexibility in treating orbitals

with short length scales without the fear of losing relevant @ZI(ﬁiD: Oup (2.4)
physical information and retains numerical efficiency. In this a

article we discuss the implementation of the PAW method and Pu(r) =0, UrC (2.5)

2.1. Transformation. Let us consider the Schdmger

It is clear that the plane wave basis, being the ideal choice in
the interstitial regiorf2,, will have great difficulties describing
the wave functionV(r) in the atomic spheres regianQa. In
'PAW method this problem is circumvented by introducing
auxiliary wave function®,(r), which satisfies the following
requirements. First,(r) can be obtained fron¥,(r) via the
invertible linear transformatiofy

W =Y 4P, 0 (2.2)

SecondW,(r) is smooth, i.e., can be represented by plane wave
basis set of a practical size, everywhere, including the atomic
spheres region,
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Using {¢3} and{pZ}, the wave function¥x(r) in the atomic
sphere region can be represented as

v (r)= zc?w #S(r) +AYr), OrcQ, (2.6)

The coefficientscﬁ,‘yll in the expansion (2.6) are given by

nga = [p3|¥,0 (2.7)

The correction

|ATCE (1= 1o g ) W,0 (2.8)

reflects the incompleteness of §ef}. As the size of the basis
{¢:} gets larger, the local basis representationtafr) (first
term in (2.6)) becomes more accurate, af@r) goes to zero.
To define a mapping intdPy(r), we now form an auxiliary
smooth basis sef¢2} subject to the following conditions.
First, the basis functior&i(r) is smooth, i.e., expandable in

terms of the plane wave basis of a practical size, everywhere

including the atomic sphere region. Secoril(r) merges
differentiably intog3(r) outside the atomic sphere:

P(r) = ¢3(r), Or CQ, (2.9)
Third, both¢3(r) and differenceg(r) — ¢5(r) form linearly

independent sets. The smooth wave functlg(r) can be
obtained based on the following prescription. Inside the atomic

sphere region it is generated by replacing each occurrence ofjy not participate in the bonding,

#3(r) with 3(r) in the expansion (2.6)
P (r)= Zcﬁ’Lx #(r) + AXr), OrcQ, (2.10)
08
whereas in the interstitial region it simply coincides with
Wi(r):
P (r)=w.(), Orce,

In more quantitative terms the transformatioh between
Wh(r) andWq(r) (see (2.1)) can be represented as

Y=1+5 (1920~ 420 B (2.11)

Its inverse can be obtained as

Y =145 S (90 90w (2.12)

where a set of smooth projector functiofi} is defined as

Bl = ;(m%au;;ma (2.13)

It can be shown that similar t§p}, the smooth projector
functions{p3} have the following properties

B 050= O (2.14)

p(r)=0, OrcQ, (2.15)

Valiev and Weare
Furthermore, it is straightforward to prove that
B3l = oY

and therefore the local basis expansion coefficients (2.7) and
the remainden\’ (2.8) can be alternatively represented as

&, = BLP,0 (2.16)

ATD= (L= 195G NI, O (2.17)

08
The above two expressions show that if the baii§}
provides an accurate local representation¥gy(r), then the
smooth basig$2} provides an accurate local representation
for Wy(r) and vice versa. This is an important observation, since
it is our objective to completely eliminat®,(r) and seek for
P, (r) directly (see section 2.3).

From a practical point of view, it is the inverse transformation
Y-1 that plays a major role in all the applications. The
expression fory~! (2.12) involves basis sefsp3} and{¢z}
and smooth projector functiod§}. The prescription for their
construction is described in detail in section 3. Since for a given
{#3} and{¢Z}, there is a unique correspondence betwggh
and{f}, the smooth projector functiod}} can be gener-
ated directly based on (2.14) and (2.15). If desired, the projector
functions{p%} can then be found from

) = ;(mﬂm o (2.18)

Finally, we note that smooth wave functions are only
generated for the valence states of the system. Since core states
they are initially imported
from the atomic calculations and kept frozen for the duration
of the calculation. Accordingly, the additional requirement is
imposed on{¢5} to be orthogonal to all the core states.

2.2. Expectation Values2.2.1. General Expressio@onsider
the expectation value of the general local (or quasilocal) operator
A with respect to a valence wave functidh

A= WAWO (2.19)

Since, as we mentioned before, the wave functiérs highly
oscillating in the atomic sphere region, the accurate evaluation
of the expectation value in plane wave basis is impractical. Let
us rewrite (2.19) in terms of the smooth wave functiBnUsing
(2.2) and (2.12) we find

AL= WAWH (2.20)
zg(mifmim@immz& (LI P (2.21)
+ ARAD

where

AIAL= 2[203(E>3I — BaNIAIA"TH

> ALY (1950- 1950c] (2.23)

(2.22)

andA® is given by (2.8) or (2.17). The original expression for
expectation value now splits into several parts. The first part is
a simple expectation value over the smooth wave funciion
which can be accurately calculated using plane wave basis. The
troublesome high frequency components are now hidden in the
second termThis term however, is one-center and restricted
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to atomic spheres regigrihus, it can be easily precomputed From (2.6) and (2.10) it is straightforward to prove that as
on the radial grids around the atoms. The last tAr{&) appears AZ—0
as a result of incompleteness of the local basis representation

and goes to zero as the size the local basis increases. nf(r)—n(r), Or cQ,
Furthermore, since the local basis representation is more accurate
near the origin of the atom, we expetf(r) become larger Ay —f(r), OrcQ,

away from the atom center. However, (2.9) shows ti8r]
— ¢5(r)) has quite the opposite behavior, and the overlap and The above approximate relationships will be used in the sections
therefore the correction[Adis expected to be small. In our  that follow.

calculations the effect oh[ALls neglected and the expectation  The decomposition into smooth and atomic densities can also
value is calculated according to be enforced for the frozen total core densityr) =

Yanr — RY
(AL~ [WIAWLH ZZ(WlﬁimﬁilAW}?D—
a o

a - - n(r) = A() + > [N — R) — Alr — R))] (2.28)
[PLIAIEDmE WD) (2.24) g

wherefi(r) = Yaii(r — R3). The atom core density(r) is
determined from a separate isolated atom calculation. The choice
of the smooth counterpaffy(r) is fairly arbitrary aside from

the requirements that it has to mata}r) outside the atomic
sphere and be smooth inside the sphere. In our calculations we
use a Gaussian form

2.2.2. Orthogonality Setting the operatoh to the identity,
AN C=o(r — ')

reveals that the orthogonality properties of smooth wave
functions{W,} are different from those ofW,}. Namely, if

~ _pr2
W, W= o, fi(r) = ae"/(4rm)
then with constantsx and determined by matchingf(r) andfi(r)
differentiably at the surface of the atomic sphere.
= = 2.2.4. Kinetic EnergyUsing (2.24) withA = —1/,V? the
WiIOIW, 0= o (2.25) expression for the kinetic energy (1.2) follows directly as
Here the overlap operator is given by T=F+ z(Ta — 1+ T, (2.29)
a
O=1+3 5 PGS0 BIFIM (226)
a where
2.2.3. Electron DensityThe relationship between the valence < Ek’ 1 . D
electron density T= an nl— EV Wy
n
n(r) = zfn|lpn(r)|2 and
n
and its smooth image ™= f ¢ @a - }VZ alg?
g - z; n~no [ Ao 2 (pﬂ ng
n
A = 1P 1
o " 5|~
4 o= z;fncgaﬁg -V ¢g@gﬁ
n

can be obtained from (2.24) by setting
Heref, denotes the occupation of stateThe core kinetic energy

A= |rm| is contained inT. and is imported from an isolated atom
calculation.
We obtain 2.2.5. Hartree EnergyUsing (2.27) and (2.28) the Hartree

energy (1.3) can written as

1 (A(r) + Ag(r))(A(r') + igr')
W_E‘f‘f p— drdr’ +
(A(r) + ﬁc(r))n%c(r')d

) = Sy 407 2 e
. - n 08 L a ) |
n(r)—anlgcna<t>a(r)|2 EZZIITdrdr (2.30)

n(r) = f(r) + Z[na(r — Ry — R —R)] (2.27)

where one-center atomic densitigr) andi?(r) are given by

rdr’ +
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whereng (r) is defined as

A(r) + ni(r) — () —n3(r)  (2.31)

nﬁ)c(r) = na(r) -0
It is important to realize that since

n'(r) = (),
ni(r) = (),

Or C &

Or C &

the densityn (r) is localized within the atomic sphei@,.
The interaction of localized charge densitigs; (r)} on the

differentatoms depends only on the overall multipole moments
of {n{.(r)} and not on its actual functional form. Thus, it is
helpful to introduce a localized compensation charge density

Nime(r) that has the same multipole momentsndg(r),

Jo,némd) Yin(P) dr = [, rn(r) Yin(F) or (2.32)

and a simple analytical form:

Mo = Zgﬁn(f) Qh (2.33)

Hereg?(r) represents a Gaussian function centered on @om

g2,(r) = (1) Yin(6.90) = Cr'e Y, (6,p) (2.34)

The width of the Gaussias? is chosen such that the compensa-

tion charge density®.(r) is completely localized within the
atomic region. The normalization constatft is fixed by the
requirement that

S A (0.90) dr =1
which leads to

2|+2

V(2 + 1)l(e?? T3

a _
|

(2.35)

The coefficientsQ?, in (2.33) are determined from (2.32) as
Qi = oI Noclr) Yi(F) o (2.36)

Since multipole moments af,(r) and ng,(r) are the same,
we find that

ff nloc(r) r‘Iloc(r) drdr’ =

ff Cmp(r) ncmp( )d d' Da=a

Valiev and Weare
Therefore, the Hartree energy (2.30) can be written as

(A(r) + A(r))A(r") + Ag(r")
Wzéff p— drdr’ +

(A(r) + n(r)Neme(r")
[r —r'|
(A(r) + A(r))(Noe(r) — Nemg(r"))
z f f I  drdr +

=

drdr’ +

(r) n (r )
zf S C’“" C’“" —E = “drdr'— (2.37)
1 nloc(r) nIoc(r’)
- ——drdr’ 2.38
2; f f Ir—r'| ( )
wherenemd(r) is given by
ncmp(r) = Zn?mp(r - Ra)
a
Substituting back the explicit expression fonf(r)
(see (2.31)), we obtain
(2.39)

W=W+ % (W, — W) + AW
a

where

1
=3/~
(A(r) + Ag(r) + Nepg(M)(A(r) + Ar') + nep(r))

- drdr’
Ir—r’|

(2.40)

1
Wa:ifszafga X

(°(r) + ni(r) — nZ(N)(n*(r') + ni(r') — n3(r’ ))

Ir—r

1
= Efsza fga X
(F(r) + () + NG (@A) + A + G fr) o
rdr

Ir —r'|

=3 [, [
(A(r) — A(r) + fir) — AN (o) — ngmp(f'))d

Ir—r

rdr’

(2.41)

The smooth Hartree enerdgly/ cannot be readily evaluated
in plane wave basis set, since the accurate representation of
compensation charge densitymgr) would require a large
number of plane waves. The solution to this problem is found
by introducing a smooth compensation chafggdr). It has
the same structure agmr),

) = 3 5 6ol

but the width the Gaussiadf, is larger than that ofj,, which
makeshcmg(r) smoother. Rewriting (2.40) in terms &fmg(r)
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we obtain 2.2.6. ExchangeCorrelation Energy In the region outside
1 the atomic spheres the wave functidf{r) coincides withW-
R r) and
W_sz x )
o o o S = g , nr) +nyr) =n(r) +nr), OreQ
() + lr) + Fen NPT + ) F ) 1)+ () =0 + 1lr) |
Ir—r| NeglectingA(r) and the core overlap we can also establish
Iy () + Alr) + e D ed) =~ el
Ir=ri n(r) +nr) = n%r) + ni(r), OreQ,
1 o (Nendr) = A dF ) (Nem1) — A1)
Ef = Cmp” — rcr,Tp E—drdr’ (2.42) Therefore the exchangeorrelation energy (1.4) can written

as

The first and the second terms in (2.42) can now be accurately
evaluated using plane wave basis set, whereas the last term i&, = fQ €A+ NY(A(r) + Agr)) dr +
|

calculated analytically using
; : S Joy, €xTE) + DO)O() + ré(r)) dr
glllrnl(rl - R)gg%(rz) 4

drdr,= Adding and subtracting
|I‘1 - I‘2|
€. (A + A)(A((r) + A r)) dr =
(27)%? 2(|+|1+|2+2)/(2)F(I thtl + }) ng wl D)+ R0}
g o ~
TR il 22 S o, €+ FE() + ()
o et 3 3 3 a
rf, + =), + =l + -
2 2 2 we obtain
[+1,+1 1 3 R? = a _ Fa
5 E=E.+ — 2.46
(D)™™ ] i RIM[———— + 2 1+, = — Bet 2 B B (2:46)
2 2 2 242
(2.43) where
wher(?o2 = [(031)2 + (62712, M(a,b,z) is a Kummer's function, E .= f e (A + AY(A) + ALr)) dr
and G'im\:'jm is a Gaunt coefficient
Glim = S YWY I (I (2.44) Exe = Jo, éx(n® + n)(n(r) + ni(r)) r
Note that decomposition (2.42) is slightly different from the Fa R =
one given by Blahl. B fsza exe(fi R (A(r) + Ae(r)) dr

Lastly we would like to discuss the correctioiV (see (2.41)) . .
which is neglected in our calculations. There are two effects  2.3. Ground State Solution.Using (2.29), (2.39), and (2.46)
that contribute to its appearance. First is the overlap of the the energy functional (1.1) can now be written in term§'é}

smooth atomic core densities, i.e., G
A(r) = i), OreQ, E{PH =T+ T AW+E A+ D (T+W,+E—
a
In all our cases this overlap was negligible. Second effect is Z(Ta~l— W, + EX) (2.47)
due to the incompleteness of the local basis set that results in a

the difference between the smooth densify) and its one- . o )
center expansiofi(r): To minimize the errors due to local basis incompleteness, it

also suggestédo augment the energy functional (2.47) with
A(r) — () = ZRdZCﬁ,a@ZMﬁEﬂ + |AYM)? (2.45) the auxiliary pseudopotential energy term
a

. . o . V=[5 FO)R) + i) -
Being proportional ta\;(r) this difference goes with to zero as a
the size of the basis increases. Furthermore, in the expression —ay~yd o
for AW the effect of (2.45) is suppressed by integration with ZI oAr)(A(r) + Rc(r)) dr
potential

2 a The potentiab?(r) is localized entirely within the atomic sphere,
Nge(r') — ”cmp(r )d , and the pseudopotential energy tevhvanishes if the basis is
fga Ir—r'| r complete and there is no core overlap. ~
Given the one-to-one correspondence betwdgrand W,
which is zero near the surface of the sphere, the place wherethe ground state energy and density can now be found by
fA(r) — f3(r) is at maximum. minimizing the energy functional (2.47) with respect i,
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subject to the constraints (see (2.25)) (N (A() + ALr") + A1)

w"=ff E _°r,| drar’ +
f f glm(r)(ncmp(r ) cmp(r’))drd

Bli’i|0|1i‘j|]= 9 (2.48)

r'+
Implementing the above constraints via Lagrange multipliers r'l

€ij, We obtain f f (ghy(r) — glm(r))(ncm?(r') - ﬁcmp(r'))drdr' B
5 Ir—r'|
—(E{P}] - 5 WOW¥DH=0 (249 I Om()(A°(r") + A) + T’ ))
6Ipn ] Qa |I’ a |
Differentiation with respect t&,, yields the following Schio The first two terms are evaluated using plane wave basis set;
dinger-like equation third term, analytically using (2.43); and the fourth term, on
the radial grids around the atoms.
(H+ Z(Ha— HY)|P,C= ZeijOPinD i=1,..N With the typical basis set size is of the order of tens of
a ] thousands plane waves a direct diagonalization of the equation
(2.50) (2.51) is impractical. The more sensible approach is to use one

] ] ) . ) of the several iterative method€o the minimization problem
Via the unitary transformation amofd’;}, the above equation (2 50). A simple steepest descent method was used in this work.
can be cast into the form similar to (1.5) as All of these methods require the calculation of the gradient

H+ Y H-H)P=eOWD (=1,..N) (251) IG= AP, O+ (H — AW, 0

where{ei} are the eigenvalues of the Lagrange multiplier matrix The smooth part of the gradieft®¥,,) can be found via standard
€ij S o technique found in pseudopotential methétislamely, given
The smooth part of the Hamiltonian in (2.50) is given by the wave function and the smooth potenii@l), Gn(k) can be
evaluated as

A = — 2v2+ (1)

2 2

Go(k) = — S0,(K) + FFTE()®,(1)]

where

o ) where FFT][...] denotes fast Fourier transformation n&pace.
y A(r') + Ar') + Nepg(r') To calculate the local part of the gradient
or)= [ | | dr' +

r—r' O
a a_ a
u i+ i + Zz‘/a(r) |G = (H® — HY) W, O (2.54)
a

it is helpful to precompute the following matrix elements
The one-center atomic contributions are given by
(N s = Jy ¥h, (by, (Dr'r
- Z;Iﬁiﬂﬁbilhﬁ ASIB (252) L
a (1) 4 =[5 00, (0G5, (r'dr
= > IBmpiIn, + of + 7G55 (2.53) & &
= ( ) — 75 S ra nyle nﬁ/j
VZ)ap = m,m~ gl 0

with . a.
(#)ap = Omm, O, RO ¢n, Or
h.(r V+ nz+ndr+ n*+n 2 =6 6 4x [T [CLip? ()6 () —
a( )= f ch[ c] (Ucore)aﬂ = UmmgUl g o Jo E{¢nulu( )d)nﬁlﬁ( ) c( )
R , (r)&ﬁ. (D)} drdr
Re(r) = — —v + f o dr' + v, [A* + 7Y
A .
| , (WBomd o5 =51 5 1Jo Jo o 90,0y mg. F(r)rZdrdr
The multipole potential
) =S @)™V () om ﬁéw B2 ) (P2, )
A =3 6" Vi ()os =5 f3] @) (@5, — @)@, +
m
(bnulu ¢ﬁﬁ|ﬁ - a’ﬁa|u a’ﬁw
stems from the dependence of the total energy on the compensa- (0, + 1) . dr

tion charge density. The coefficient&@fm are given by r
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A4r
2|—+-10

¢;‘Vly(r ) - ¢na.a(r)¢nﬁ|ﬁ(r>¢nu.ﬂ(r )&%, ()}’

(r)¢n I (r ) X

ay |
(vr) apuv = |+1

where the following representation for PAW basis was assumed:

a n Iy (r)
BN =, (0.0)
~a n Iy (I')
B =, 1 (0.0) (2.55)
. ﬁgﬂla(r)
p(x(r) = TYlumu(a@)

with a as compound indexnfl,my).
In this notation the local part of the gradient takes the form

Gy(r) = ; |f’3meﬁ)aﬁcﬁﬁ
where

(Cop = )op T (1D)ep T Weordap + (e +

ZGI MeolgMy Q'm(Ucomp) w T
Z lamy, Iﬁmﬁ( q)lm((n ) af (ﬁa) laﬁ) +

|
Z I oM Iﬁmﬁ(UH ) offuv Glrnmu Iym(zfn’cﬁa ) +
unL ¥y, n

ZGI mulﬂmﬁ(yxc) lan,l]%

Since Gaunt coefﬂuerﬁ (defined in (2.44)) is nonzero
only if all the following conéﬁjons are satisfied:

m-—m,+m;=0

Il

mod( + 1, + 15 2)=0

the summation over orbital momenta can be greatly reduced.

Currently the exchangecorrelation matrix elementz/fv) af 1S
recalculated at each step in the self-consistent process as

(20 5= [0, OB, (1) = G, (TG, (] dr

V() = [ v [0+ 0 Y (F) of

O = [ v i+ WY (F) of

The calculation of &X() can be simplified via Taylor expan-
sion around the domlnamt— 0 term?

3. Generation of the Local Basis Set

Construction of the local basis set is an important step in the

J. Phys. Chem. A, Vol. 103, No. 49, 19980595

Holzwarth et al?1. To determine the local basis sgp?},

we performed a self-consistent spin-restricted spherically sym-
metric calculation for a given atom. This calculation provides
the bound state valence orbitals that constitute the main part of
the basis{¢3}. The rest of the basis sétp5} comes from
scattering states at specific energies, which are obtained by the
outward integration of the Schdimger equation with the already
determined KohrSham potential. Oncég3} is found, the
smooth basis s€ip?} is constructed similar to the method that

is used to obtain Hamman pseudopotential.3@t) denote the
Kohn—Sham potential obtained from the earlier calculation of

{3}

(- 5V + O = € ¢i0) (3.1)

We now introduce a smooth potent@d(r) defined such that
73(r) ~ v¥(r) outside the atomic sphere radig3. The actual
functional form ofz3(r) inside the atomic sphere could be chosen
in many different ways. In the present work for all the elements
excluding transition elements we use

(r) = (1 — & ")A(r) + Be
where is usually set to 6 and the cutoff radiugis chosen
such that e ~ 0 forr > Re. For transition metal elements
we use

(3.2)

~a 2 ~a 4
+ ur + vgr

Ar) =75 (3.3)
where parameters; and 7, are adjusted suck?®(r) merges
smoothly into?(r) on the surface of the sphere € rf). In

both cases the parame#évaries for different elements and is
used to improve the scattering properties. Once the smooth
potentialz3(r) is defined, the basis functiog(r), is found as
solution of the differential equation

(— 1v2 4 52(r) + e —

> qjiin=0 @4

The parametec’ is adjusted so that
F(RY) = $3(RY)

dp3(r)|  dei(r)
dr dr

r=Ra r=Re

Since potentiak?(r) is spherically symmetric botgZ(r) and
#5(r) can be represented as

N TG
¢a(r) = —Ylama(r)

51, (1)

o) = Yin ()
where nodal structure a;fn l, (r) is such that for given orbital
momenturr, the lowest energy orbital has zero nodes, the next
lowest, one node, and so on.

The set of projector functiong:} is obtained fron{¢$3} as

PAW method and determines the success of the subsequent

calculations. In the present work we have closely followed the
procedure suggested by Bhl’ (for other approaches see

192 4+ 520 — e)grm)

0 =3
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TABLE 1: Parameters Used in the Construction of Local The local potentiab(r) is obtained as
Basis Set
a - A*+ S+ nd
element basis (53) (o (ZZ) (Zé%) ) =5~ [ ﬁdr' — vy [A° + ]
Ha  1s 0.35 0.25 0.076-3.43
Hb  1s,2p(0.0) 0.35 0.25 0.076-3.43 4. Results
Be 2s,2p 228 162 0544 0.64 ) .
C 2s,2p 12 0.85 0.26 —2.80 In the following we assess the accuracy and efficiency of
0*  2s,2p 1.09 0.89 0.24 —3.24 the PAW method by comparing the results with various other
O: 2s,2p, 3s(1.0), 3p(1.0) 1.09 0.89 0.24-3.24 LSDA calculations such as norm-conserving pseudopotential,
I(:)a 32 gg' 35(1.0), 3p(1.0), 3d(0.5) 1_%"1090_25890_3'7244:%; local basis, and finite grid calculations. The results we present
P 2s 2p, 35(0.0), 3p(L.0) 124 0.89 0.2741.81 here show that as far as numerical accuracy is concerned the
F¢  2s,2p,3s(0.0),3p(1.0), 3d(0.0) 1.24 0.89 0.2741.81 method performs quite well. For a same number of plane waves
Cr  3s,3p, 3d, 4s, 4p, 4d(1.0) 149 1.10 0.3262.58 our present PAW code is a factor of 1.5 slower than our most
Fe  3s,3p,3d,4s,4p, 4d(1.0), 55(1.0) 1.78 1.27 0.392.99 efficient pseudopotential code. The situation can certainly be
a Numbers in round brackets in the second column denote the energyimproved since our pseudopotential code has been optimized
of the scattering states. by continuous use for the past several years, whereas the PAW
Since code is still in the development stage. However, even at this

level of performance, the PAW method has an advantage over
norm-conserving pseudopotential methods for transition metal
elements, since it requires a much smaller plane wave basis
set.

Since our effort is to understand the convergence properties
of the method rather than to predict properties, most of the
molecules and atoms chosen for calculation have been selected

) =24r), Or>r§

it follows from (3.4) that{;} are indeed localized within the
atomic sphere region. Finally we used the Gra®thmidt
method to transform all three sefsp’}, {¢a}, and{{pa} such

that because they have been extensively studied by other LSDA
o 2 methods and because they present problem cases for the
f(pu(r))*¢ﬂ(r) zéaﬂ application of norm-conserving pseudopotentials. In all the
. ) 2 calculations, the size of the cubic simulation cell was set at 20
Note that this last step scrambles basis §¢f$ and{¢} and au and the exchangeorrelation functional was based on VWN
that they no longer satisfy (3.1) and (3.4). parametrizatio? It is well-known that the LSDA approximation

Additional quantities that are determined in this part of the  ignjficantly overestimates bond energies of diatomic molecules,
calculations are the core densitigf§r), fi;(r), the width of the  egpecially in case of transition metal elements. As our objective

compensation charge®, and the local potential®(r). The  was to observe the performance of PAW as a method for solving
smooth core density is chosen to be of the form the LSDA equations, any discussions of improvements in LSDA,
o, gradient corrections, etc., are left for future work.
fi(r) = ae " /(4x) (3.5) 4.1. Atoms.The accuracy of the PAW method depends on
) ) ) two factors: the completeness of the plane wave basis set with
It is matched to true core density(r) at the radiusR®: respect to the smooth wave functiqiE,} and the completeness

of the local basis sef¢} in the atomic sphere region. The
magnitude of these errors can be efficiently assessed by studying
the results of PAW calculations for isolated atoms. (See Figure
1)

r=Ra The size of the plane wave basis is typically characterized

} o by the energy cutoff, the kinetic energy of highest plane wave
The compensation charge widifi is calculated such that the i the basis. As the energy cutoff increases, the errors due to

fil(RY) = n(R)

di(r)
dr

_dnn)
r=Ra - dr

atom compensation charge density incompleteness of the plane wave basis become smaller.
a _ a a However, a large energy cutoff can lead to unrealistically long
Nemp(T) = Goo(") Qoo execution times. In the PAW method the plane wave basis errors

are determined the smoothness of basig &gk, since in order
for various cancellations to occur the plane wave basis
representation of ¢} should be equivalent to that on the

is nearly zero at the surface of the atomic sphere. The multipole
momentQ}, is determined as

a 1 a ~a a - a radial grid around the atom. The smoothness of the @ik
Qoo = f fsza (n(r) — A°(r) + nc(r) — Ag(r)) dr — Z depends on the size of the atomic sphere as well as the strength
& of the effective atomic potential. Our choice for the radius of
whereZ? is the atomic charge and the densitigg) andi(r) the atomic sphere was around half the bond length of the

are obtained by summing over thascrambled(before the corresponding homonuclear diatomic molecule. The conver-
Gram-Schmidt procedure above) valence orbitals and their 9ence of total energy calculated with the PAW method as a
smooth images function of the energy cutoff for various isolated atoms is shown

in Figure 2.
n?(r) = Zfa|¢2(r)|2 As expected, the total energy errors correlate with the size
& of atomic spheres and the effective atomic charge. Owing to a
large sphere size of 2.28 au and small effective charge, Be,
() = Zfa|<]>§(r)|2 which is easily handled by norm-conserving pseudopotential
@ calculationg® achieves a 1% Ha (~0.03 eV) error in total
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Figure 1. PAW basis for Cr: all-electron local basis functions, thin
solid lines; smooth local basis, thick solid lines; projectors, dashed lines.
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Figure 3. Comparison of the logarithmic derivatives of PAW and all-
electron methods evaluated at the distance of 1.24 au. Left part refers
to the setup fFin Table 1; right part refers to the setup i Table 1.

Similar to pseudopotentials, the PAW method will reproduce
the isolated atom energies by construction. However, when the
atom is inserted into the solid or molecule plane, the wave
function will mix in a way different from that in the isolated
atom. How well the correct (all-electron) mixing is reproduced
in the new environment depends on the transferability of
pseudopotential or the completeness of the local basis set in
the PAW method. A common measure of the pseudopotential

transferability is the comparison of the scattering properties of
the pseudopotential and all-electron calculations. The same
comparison in the PAW method serves a measure of the quality
of the local basis representation of the PAW Hamiltonian. To
] perform this test, a scattered state problem for the PAW
Hamiltonian is solved on a radial grid around the atom. The
05 s 700 . o logarithmic derivative of the PAW scattering state is then
cutoff (Ry) compared to that of all-electron scattering state. Results of such
Figure 2. Plane wave convergence for the atomic total energigs. d  calculations for the fluorine atom are shown in Figure 3. A
defined as an absolute energy difference with the respect to the totalminimal basis set (Fset in Table 1), containing one function
energy at 100 Ry. Size of the simulation cell was set at 20 au. per angular momentum channel, provides a satisfactory descrip-
energy with a cutoff of as little as 12 Ry. F represents an the tion of the scattering properties (see left part in Figure 3). The
extreme case of a system on the right-hand side of the periodicScattering properties using an expanded basis 8eeffin Table
table, and in the first row, this element has a very high effective 1), containing two functions per angular momentum, are given
atom electron potential. Like other elements in the first row, in the right panel in Figure 3 and show convergence toward
the 2p orbital does not have to be orthogonal to an earlier p the all-electron result. The same trends have been observed for
orbital and, therefore, effectively penetrates the core. Both theseOther elements, illustrating that the local basis description in
effects lead to the necessity of a strong norm-conserving the PAW method improves as the size of the basis set grows.
pseudopotential for the p component of the wave function and  4.2. Homonuclear and Heteronuclear Diatomic Molecules.
resulting difficulties with plane wave convergence. In this case 4.2.1. Second-Row DimerBhe second row diatomic molecules
the PAW converges to a millihartree by 60 Ry. A similar provide a good test for the PAW method, since these systems
convergence calculatiéhfor the soft Troulie-Martins poten- have been thoroughly investigated by a variety of LSDA
tial?2 (cutoff radius 1.2 au) requires 150 Ry, a cutoff which methods'!¢2*Our main objectives were to assess the accuracy
would lead to an very large plane wave basis. Transition metal of the PAW method, the robustness with respect to different
element Cr, with the small sphere size of 1.49 au and a largelocal basis sets, and the convergence with respect to the plane
effective charge, requires 80 Ry for an accuracy of two wave basis set. Since LSDA is used without gradient corrections
millihartree. This accuracy is beyond that of the LSDA in these calculations, the calculated bond energies reported are
approximation. Calculations including dynamics with 80 Ry expected to be considerably larger than the experimental energy.
cutoff are now appearingf:33The above energy cutoffs can be  Therefore, comparisons are made with the other LSDA calcula-
reduced by increasing the size of the atomic sphere. However,tions. Unless noted otherwise, all the LSDA calculations were
large atomic sphere size can lead to overlap errors in dimersbased on VWR* parametrization of the exchangeorrelation
and cluster systems. It may also increase errors due to localfunctional.
basis incompleteness, since the local basis representation of the We start with an Hdimer. The highly localized nature of 1s
wave function will be required to cover a larger region of space. orbital and small atomic radius requires a relatively large plane

dE(Hartree;
o
(=3
N

0.01

0.00 O
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TABLE 2: Spectroscopic Properties of H Molecule (X) TABLE 4: Spectroscopic Properties of G Molecule (X)
Calculated with Different LSDA Methods? Calculated with Different LSDA Methods?
method R (au) De (eV) w(cm™?) method R (au) De (eV) w(cm™?)
this PAW (H) 1.46 4.86 4172 this PAW 2.37 7.27 1736
Gaussiatf 1.45 491 4277 finite grid* 2.35 7.3 1880
PAW (Blochl)” 1.46 4.62 4040 Gaussiaff 2.36 7.19 1869
finite grid* 1.45 4.9 4190 pseudopotentiah 2.34 7.17 1849

aPAW local basis set consisted of single 1s orbital, see Table 1. 2PAW local basis set consisted of 2s, 2p orbitals, see Table 1.
Blochl's calculation uses PerdeviZunger parametrization of the  Pseudopotential numbers correspond to psp 1 potential at 67 Ry.

exchange-correlation functional. ) )
TABLE 5: Spectroscopic Properties of Q Molecule GX)

T , ¥ Calculated with Different LSDA Methods?
2 method R (au) De(eV) w(cm™?)
this PAW 2.31 7.32 1571
PAW (Blochly 2.32 7.33 1660
Gaussiatf 2.30 7.54 1563
finite grid* 2.27 7.6 1620
Be aPAW local basis set consisted of 2s, 2p orbitals, see Table 1.
Blochl's calculation uses PerdewZunger parametrization of the
c exchange-correlation functional.
° TABLE 6: Spectroscopic Properties of i, Molecule (X)
Calculated with Different LSDA Methods?
method R (au) De (eV) w(cm)
this PAW () 2.66 3.23 1106
PAW (Blochl)” 2.67 3.11 1148
pseudopotential (118 RY) 2.58 3.30
Gaussiatf 2.62 3.32 1069
0.0 0 70 %0 0.0 o 20 EX) 40 finite grid* 261 34 1060

r (au)

) o . aPAW local basis set consisted of 2s, 2p orbitals, see Table 1.
Figure 4. Localization of s and p orbitals for the second-row elements. B|schl’s calculation uses PerdevZunger parametrization of the

. . exchange-correlation functional.
TABLE 3: Spectroscopic Properties of Bg Molecule (X) X g on functt

Calculated with Different LSDA Methods?* TABLE 7: Spectroscopic Properties of G Molecule CGX) for
method R (au) D. (eV) w(cm™?) Different PAW Local Basis Sets
this PAW 4.62 0.49 350 basis set R(au) De(eV) w(cm™)
Gaussiatf 4.63 0.5 362 2s, 2p 231 7.32 1571
PAW (Bldchl) 4.51 0.53 367 2s, 2p, 3s(1.0), 3p(1.0) 2.30 7.42 1583
finite grid 0.56 2s, 2p, 35(0.0), 3p(1.0), 3d(0.5)  2.29 7.44 1582

aPAW local basis set consisted of 2s, 2p orbitals, see Table 1.
Blochl's calculation uses PerdewZunger parametrization of the
exchange-correlation functional.

TABLE 8: Spectroscopic Properties of F, Molecule (X) for
Different PAW Local Basis Sets

basis set R(au) De(eV) w(cm?)
wave basis set. In our calculation we used an energy cutoff of 25, 2p 2.66 3.23 1106
60 Ry. The local basis consisted of single 1s orbital. As reported 2s, 2p, 3s(0.0), 3p(1.0) 2.64 3.32 1108
in Table 2, the PAW results agree very well with the other 2s,2p, 35(0.0), 3p(1.0), 3d(0.0) ~ 2.64 3.33 1109

LSDA calculations.

Next we have calculated second-row homonuclear molecules,table. The errors due to local basis set incompleteness (see
Be,, C, O, and K, using 2s, 2p local basis set. The (2.23)) in PAW method should become more accurate as the

distinguishing feature of second-row elements is a gradual Size of the basis increases. We have demonstrated before that
localization of 2s, 2p valence orbitals (see Figure 4) across thethe scattering properties of the fluorine atom improve as the
periodic table. local basis set grows. Here, we studied the change in the ground
Located on the left-hand side of the periodic table, Be has State properties of HF, as the basis size increased. The results
fairly diffuse electronic states and can be easily treated via planein Tables 7 and 8 indicate the addition of the 3s and 3p functions
wave pseudopotentia| metho#fdn our calculation of Bg(see results in better agreement with the results by Painter and
Table 3) we have used a cutoff of 25 Ry As one moves to the /A\Veri"l6 and Becké Further addition of 3d basis function has
right the electronic states become more and more localized (sedittle effect. The improvement of the binding energy for a bigger
Figure 4), and by F the problem becomes quite difficult for basis set is only of the order of 0.1 eV. This means that the
norm-conserving pseudopotential methods. Such behavior canminimal 2s, 2p basis set already offers a good description of
be accommodated by the PAW method since the rapidly varying the atomic sphere region in the second-row elements.
localized components of the orbitals are projected out using the We have also performed a PAW calculation of HF molecule.
local basis set. In our calculations 0$,@,, and k, molecules The energy cutoff was set at 60 Ry. Strong ionic character of
(see Tables 46) we have used a cutoff of 60 Ry. this molecule serves as a good test of the accuracy and
Overall, as the results in Tables-8 indicate, even with the  robustness of PAW local basis set. The local basis set for F
small (2s, 2p) local basis set the PAW method can provide consisted of 2s and 2p orbitals; the basis set for H was varied
accurate LSDA results across the second row of the periodic from single 1s orbital to 1s, 2p orbitals. In both cases, the PAW
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TABLE 9: Spectroscopic Properties of HF Molecule
Calculated with Different LSDA Methods?

J. Phys. Chem. A, Vol. 103, No. 49, 19980599

TABLE 10: Equilibrium Properties of Cr , Molecule
Calculated with Different LSDA Methods
method R (au) De (eV) w(cm™Y) R (au) De (eV)
PAW (H2, F?) 1.77 7.02 4192 PAW 3.05 3.1
PAW (HP, F3) 1.77 7.02 4182 finite grid* 3.0
finite grid® 1.77 7.0 4143 DMOL?% 3.21 1.8
APW?L 1.76 6.23 3990 Gaussian (all-electrot) 3.27 2.4
pseudopotential (118 RYf) 1.75 7.03 Gaussian (with pseudopotentfal) 3.21 2.8
@ The APW calculation by Serena and Baratoff was based on Hedin S)?plilssmn (all-electrof) %1177 21%6
and Lundqvist parametrization, and the rest of the calculations were
based on VWRF parametrization of the exchangeorrelation func- aDMOL calculation was based on von BartHedin functional.
tional.
and ultrasoft pseudopotentials. From a numerical point of view
1.5 . ' ' both methods should have roughly the same efficiency. How-
| ever, there are several advantages associated with all-electron
nature of PAW approach. First, the issue of parameterizing the
& ""-\ pseudopotential is avoided in PAW. This can be quite difficult
sé 1ol | in Vanderbilt_’s method?® Seconc_l, th_e accuracy of the P_AW
g o—e@paw _method (W|th|r_1 the LS_DA appr(_mmatlon) can by sy_stematlca_lly
g 4 =— 8 pseudopotential improved by increasing the size of the local basis set. Third,
2 4 the PAW method provides all-electron KohBham wave
H "\\ functions that are necessary in certain applicatiéns.
I 4.2.2. Transition Metal DimersThe third-row transition
%0'5 I ) metals are among the most difficult elements to describe with
g ' plane wave pseudopotential methods. These atoms cdntain
g 0 components with several nodes that extend to large distances
. as well as tightly bound (nodelesk} 2 states that are well
. localized close to the core. For example, (see Figure 1), for Cr
0.00‘0 50.0 100.0 150.0 200.0 the 3d atomic functions has an outer maximum at about 1.3 au
energy cuttof (Ry)

Figure 5. Comparision of the total energy convergence for F dimer

using PAW method (setup®Fand Troullier-Martin pseudopotential
calculationt’

results agree very well with finite grid calculations by Betke
(see Table 4).

(see Figure 1) and the loosely bound 4s function has an outer
maximum at 3 au. Simultaneous description of these two
different length scales is difficult with norm-conserving pseudo-
potentials. The proper treatment of both 3d and 4s states is
important in transition metal dimers. In addition there is a
substantial overlap of localized 3d orbitals with the core states
which makes separation of the core and valence density in

Since the norm consgrvation step is omitted while generating pseudopotential calculations problematids a result, the
smooth local basis s€t3}, the PAW method is expected to

yield a better convergence with respect to the size of the planeysing the local basis set methods.

wave basis set than norm-conserving pseudopotential methods.

majority of ab initio calculations for these systems are performed

In this work we have investigated two transition metal dimer

Using a minimal basis set consisting of 2s, 2p orbitals (setup systems, Grand Fe. In both calculations the energy cutoff was
F2in Table 1), we have performed PAW calculation of the <ot 4t 60 Ry.

binding energy of k for the plane wave basis sets with the
different energy cutoffs. The comparison of these results with
the similar plane wave pseudopotential calculatibissshown

The chromium dimer Grhas a short bond length of about

3.2 au, accordingly the atomic sphere radius for the generation
in Figure 5. The pseudopotential calculations were based on

Troullier—Martin pseudopotenti#d with the cutoff radius of 1.2
au, which is close to PAW cutoff radius of 1.24 au. As shown
on Figure 5, the PAW results were well converged within a

of the PAW set was set to 1.5 au. At such small bond distance
there is a significant overlap between 3s and 3p semicore states
on the neighboring atoms, which prompted their inclusion in

local basis set (see Table 1) along with 3d and 4s states. In
millihartree by 60 Ry, whereas a cutoff of 140 Ry was necessary 22{55;1;? rg;tehaléhtiaﬂztf%#ﬁféiﬁgiﬂ;ﬁ?ﬁé Egz\én

to get the same accuracy with the norm-conserving pseudopo- 9 9 ’
tential approach. This represents a substantial improvement in

efficiency, since doubling the plane wave basis cutoff increases
the number of plane waves in the basis by approximately a factor

7, () o (AP0 (d) o(sF

of three. Similar convergence has been observed when the locakxhibits a spin symmetry breaking, i.e., in a given molecular
basis set was increased to include 3s, 3p orbitals. This is notorbital spin-up and spin-down electrons are concentrated on the
surprising since the plane wave convergence depends on thepposite atoms in a dimer. The calculated equilibrium bond
smoothness of the auxiliary basis §éf} which is controlled distance was 3.04 au with the binding energy of 3.24 eV. The
by the size of the atomic sphere. Increase in the local basis settomparison of these results with other calculations is given in
improves the approximation used to obtain (2.24). Table 10. In all the calculations the LSDA approximation
It should be noted that the convergence of the pseudopotentialsignificantly overestimates the binding energy of, Grs

methods can be greatly improved be removing the norm compared to the experimental value. Considering the rather large
conservation condition via Vanderbilt's ultrasoft pseudopoten- discrepancies in energy between the various local basis calcula-
tials2® As discussed by Blkhl” and later by Kresse and

tions the PAW calculation is within the accuracy of present
Joubertl® there are certain similarities between PAW method LSDA calculations.
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TABLE 11: Structural Properties of Fe, (YA,) Molecule: TABLE 12: Binding Energy of Fe, (A,) Molecule
Experimental Values as Cited in Reference 3 Calculated Using Different LSDA Methods
R (au) w(cm™) reference atoms  PAW  Gaussi&n Gaussiah  Blochl”
this PAW 3.70 464 spherical 4.49 4.38 3.99
Gaussiah 3.69 497 nonspherical 2.74 2.89
Bléchl PAW 3.69 441
gigﬁdomte”“éﬂ %'%‘é 281 209.6 the reference atoms, we obtain the binding energy of 2.74 eV,
R : which is close to the 2.89 eV result of Dhar and Kesthaho,

: . : . . as we understand, also did not impose any symmetry on the
reference atom. Our binding energy with regard to spherically
symmetric Fe atom is 4.49 eV, which is close to the 4.38 eV
result of the Gaussian calculation of Castro, Jamorski, and

012 ¢ ; SalahuBwho also use spherically symmetric atom and the same
VWN?24 parametrization of the exchangeorrelation functional.
This answer for the binding energy differs by 0.5 eV from the
015 PAW result of Blahl who has used a different local basis set
(see Table 1 in ref 7) and a different (Perdedunger)
0 parametrization of the exchangeorrelation functional. Similar
= to the case of GrLSDA value for binding energy again results
L 18 in a severe overestimation of the experimental results (1.1# eV,
3 1.30 e\AY).
g
5 5. Conclusion
® 020
The accurate description of the potential surface between
reacting species continues to be a central problem in the
simulation of systems in which chemical change is important.
-0.22 Recent advances in electronic structure calculation using plane-
wave methods has allowed the simulation of the dynamic
behavior of complex systems directly on the ground state
electronic surfacé? These methods, while providing much new
0255 35 70 a5 50 55 6.0 information on complex systems, are limited in their application.
bond distance (au) Essentially all the first principles methods for ab initio dynamics
Figure 6. Molecular orbitals ordering for Cr dimer: squares correspond are based on plane wave splunons to the LSDA equatllons. For
to 7 state, filled and opaque circles tostates, triangles té state. these solutions to be practical the plane wave expansions must

be limited to the order of 500000 functions. For this to be case

The different length scales of the 4s and 3d functions lead to the wave function must be sufficiently smooth. For many
an interesting variation in the molecular orbital ordering as a elements this can be achieved by replacing the potential terms
function of bond length. For small bond lengths, the 3d orbitals leading to the fast variation in the wave functions by smooth
overlap strongly and the lowest molecular orbital has a large norm-conserving pseudopotentials. Pseudopotential methods are
3d component. On the other hand, for longer bond lengths thewidely used and for some systems have been shown to have
4s interaction are strongest and the lowest molecular orbital hasaccuracies similar to all-electron LSDA methad8dJnfortu-

a large 4s component. To describe chemical processes withnately, for some systems the atom electron interactions are so
various bond lengths, it is important to get the right balance strong that it is difficult to find a pseudopotential that will allow
between 3d and 4s bonding. The orbital ordering for & a a manageable plane wave solution. Important examples of such
function of bond distance is given in Figure 6. The ordering systems are the atoms first row atoms on the right side of the
predicted by PAW method agrees well with all-electron Gauss- periodic table (O and F) and the transition metal elements. The
ian calculation by Baykara, McMaster, and SalaRubhe transition metal elements are particularly difficult because they
crossover between lowest and ¢ occurs around 3.6 au  contain several length scales associated with the s, p, and d
compared to 3.7 au as obtained by Baykara, McMaster, andsolutions to the LSDA equations. A number of articles have
Salahul? been published which address these probl&#s.

The Fe dimer has a slightly larger bond length than @hich In this work we have studied the projected augmented wave
allows for a smoother basis. Consistent with local basis method, an approach which is related to pseudopotential
calculations PAW predicts that the lowest energy configuration methods but takes a different path. In PAW method the rapidly
in Fe is ferromagnetic with the total spin 3 and the valence varying portion of the wave function is projected out using local

configuration given by atomic basis set. The method, therefore, has some relation to
the local basis methods that are widely used in quantum
[1ag7rﬁ 6520963 :rélau]?[1097t5209<§g]J chemistry. The smooth remainder of the wave function is treated

with plane waves essentially in the same way as in pseudopo-

The calculated bond distance of 3.70 au and frequency 464tential calculations. Since the local basis matrix elements can
cm1, which is in good agreement with other LSDA calculations. be precomputed, the efficiency of the PAW method should be

There is less agreement regarding the LSDA values for the similar to that of plane wave pseudopotential method. For large

binding energy. The situation is complicated by the choice of plane wave basis sets the most time-consuming parts in PAW

the reference configuration of the isolated atom Fe&{8)l. As method are the calculation of the local gradient (see (2.54)) and
reported in Table 12, if no spherical symmetry is imposed on wave function orthogonalization. The calculation of the local
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gradient scales alaNyNgNe, whereN,; number of atomsN, ONR Grant N00014-97-1-0751. Additional support was received
number of basis function per atolg number of plane waves,  from LLNL Grant ICSR 98-11 and IUT B338397. We also
and Ne number of electrons. This is similar in scaling to of thank E. Bylaska and R. Kawai for helpful discussions during
nonlocal pseudopotential calculation in plane wave pseudopo-the course of this work.
tential methods. The orthogonalization part scalesNls,.
Since Ny ~ Na and Ne ~ Na both, local gradient part and (1) Abramovitz, M.; Stegun, |. AHandbook of Mathematical Func
. . . . vitz, M.; un, I. | unc-

orthogonahza_tlon will scale as third power of the number o_f tions Dover Publications: New York, 1970,
atoms. At this stage of the development our PAW code is (2) Ballone, P.; Jones, R. @hem. Phys. Lettl995 233 632.
approximately 1.5 times slower than the highly optimized norm- ) é?é) Baykara, N. A.; McMaster, B. N.; Salahub, D.Rol. Phys.1984

X . 52, 891.
conserving psgudopotentlal code. . (4) Becke, A. D.Phys. Re. 1986 A33 2786.
The main difference b_etween pseudopotential and PAW  (5) Becke, A. D.J. Chem. Physl992 97, 9173.
methods is that the latter is an all-electron method. No part of (6) Bernholc, J.; Holzwarth, N. A. WPhys. Re. Lett.1983 50, 1451.
the valence orbitals is ever discarded but rather treated in gg g'nghF'é PbaEErFi)nhglllsd Fﬁ;’bﬁ)91594R‘385%e1H7519335 55 2471
different spaces. The local part of the Hamlltor_uan (see (2.52)_ (9) Castro. M.. Jamorski, C.. Salahub, D. Ghem. Phys. Lett.997
and (2.53)) through the dependence on the orbitals can dynami-271, 133.
cally respond to the changes in environment. This should be (10) Delley, B.J. Chem. Phys199Q 92, 508.

; : _ (11) Dreizler, R. M.; Gross, E. K. UDensity Functional Theory
contrasted with the pseudopotential methods where the pseudospringer_\/erlag: New York, 1990.

potential is a static frozen quantity, imported from the isolated " (12) Holzwarth, N. A. W.: Matthews, G. E.; Dunning, R. B.; Tackett,
atom environment. The all-electron nature of the PAW method A. R.; Zeng, Y.Phys. Re. 1997 B55, 2005. _

is also invaluable in other than ground state applications such (é%h';g'zgeaﬁlhég'\é BAE.S;N.l;nga;thews, G. E.; Tackett, A. R.; Dunning,
excited state energies, polarizabilities, etc., which require the ™ 14 Kawai, R. Private communication.

knowledge of all-electron orbitals. The core orbitals in PAW (15) Kresse, G.; Joubert, [Phys. Re. 1999 B59, 1758.

method are frozen but not ignored completely as typically done 8% Ea!n:er, g ; g\;]enll, CFH “nﬁgéé 508'51593%2 B26, 1781.

. . - . . ainter, G. SJ. Phys. Che ) .

in pseudopotential met_hods. C9n3|der|ng. the nonlinear nature (18) Petrilli, H. M. Blachl, P. E.: Blaha, P.: Schwartz, Rhys. Re.

of the exchangecorrelation functional carrying the total density 1998 B57, 14960.

(valence plus frozen core) can be important factor for some  (19) Pickett, W. EComput. Phys. Refi989 9, 115.
systems. (20) Remler, D. K.; Madden, P. AVlol. Phys.199Q 70, 921.

. . . . 21) Serena, P. A,; Baratoff, A.; Soler, J. hys. Re. 1993 B4
Various approximations must be made to implement the PAW 201(16.) Y 3 B48

method, e.g., (33), but according to the results that we have (22) Troullier, N.; Martins, J. LPhys. Re. 1991, B43 1993.
presented in section 4 this does not impair the accuracy of PAW gig gggggrg'th D-'C\;]il)lks'LReN&gsggirBéjé a7r?932'Phy5198Q 58 1200
calculations and the numbers prodpced are of the same qualify (25) Kawai, R.; Weare, J. FPhys. Re. Lett. 1989 65, 80. :
as methods based on local expansions. For all the elements that (26) Bylaska, E. B.; Taylor, P. R.; Kawai, R.; Weare, J. H.Phys.
we have studied the size of the plane wave basis can be kept afhem.1996 100, 6966. .

the practical level allowing efficient implementation in ab initio ,(27) Delley, B.; Freeman, A. J.; Ellis, D. Bhys. Re. Lett. 1983 50,
dynamics. We believe that vyith improvements in efficiency the " (28) cheng, H.; Wang, LPhys. Re. Lett. 199 77, 51.

PAW method should provide a very general and accurate (29) Dhar, S.; Kestner, N. RRhys. Re. 1988 A38 1111.
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