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The projector-augmented wave (PAW) method proposed by Blo¨chl is an all-electron ab initio approach to
electronic structure calculations. Using a local basis set expansion, the LSDA wave function is mapped onto
a smooth image which can be treated with a plane wave basis set of a practical size. We discuss our
implementation of this approach and its application to the calculation of the bonding properties of several
second row and transition metal diatomic molecules. Comparisons are made between PAW and other methods.
Our results for binding energy, bond length, and vibration frequency indicate that the accuracy of the PAW
method is similar to that of local basis and finite grid methods. The convergence with respect to number of
plane waves is sufficient that practical calculations are possible even for systems which would be difficult to
treat with pseudopotential methods. For example, for the F2 and Fe2 dimers the bonding energy is converged
with a 60 Ry cutoff in the plane wave expansion. The local basis contributions that appear in the theory can
be precomputed, and therefore, the overhead typically associated with the local basis method is greatly reduced.
For a fixed size of the plane wave basis set the execution times of the PAW method are similar to those of
plane wave pseudopotential methods.

1. Introduction

Ab initio electronic structure calculations in material science
are making increasingly important contributions to the inter-
pretation of experimental data and are providing new insights
into processes which are otherwise inaccessible to laboratory
probes. Generally material problems are sufficiently complicated
that the preferred method of electronic structure calculation is
based on density-functional theory (DFT) within the local spin
density approximation (LSDA).11 The central quantity in this
method is the energy functionalE[{Ψn}], which for a typical
molecular system is given by

whereT is a kinetic energy,

W denotes the Hartree energy,

Exc is the exchange-correlation energy,

Here{Ψn} represent a set of auxiliary single particle orbitals,
also known as Kohn-Sham orbitals. The valence densityn(r )
is defined as

The densitync(r ) ) ∑anc
a(r - Ra) is the sum of the core charge

densities, andnZ(r ) ) ∑aZaδ(r - Ra) represents the sum of the
ion charge densities over the atomic sitesa. Although not
indicated explicitly, the constant infinite ion self energy term
in (1.3) is assumed to be subtracted out. The total energy and
the density of the ground state can be found by minimizing
E[{Ψn}] with respect toΨn(r ), subject to orthogonality con-
straints. This leads to the effective Schro¨dinger equation:

where HamiltonianH is given by

Here,Vxc(r) represents the exchange-correlation potential:

Since the exchange-correlation potential is a function of the
electron density, the single-electron equations (1.5) are coupled
and require a self-consistent solution. In practice, the solution
of (1.5) proceeds by expandingΨn(r ) in terms of a predeter-
mined finite set of basis functions{øR(r )}

The traditional choice for{øR(r )} in chemical applications is a
set local basis functions centered around the atoms. Common
examples are the numerical solutions to the corresponding
atomic problems10 or various Gaussian functions.9 The local
basis approach provides an efficient expansion of the wave

E[{Ψn}] ) T + W + Exc (1.1)

T ) ∑
n

fn〈Ψn|- 1

2
∇2|Ψn〉 (1.2)

W )
1
2∫∫ (n(r ) + nc(r ) - nZ(r ))(n(r ′) + nc(r ′) - nZ(r ′))

|r - r ′| drdr ′

(1.3)

Exc ) ∫ εxc(n(r ) + nc(r ))(n(r ) + nc(r ))dr (1.4)

n(r ) ) ∑
n

fn|Ψn(r )|2

H|Ψi〉 ) εi|Ψi〉, (i ) 1, ...,N) (1.5)

H(r ) ) - 1
2
∇2 + ∫ n(r ′) + nc(r ′) - nZ(r ′)

|r - r ′| dr ′ + Vxc(r )
(1.6)

Vxc(r ) )
δExc

δn(r )
(1.7)

Ψn(r ) ) ∑
R

cn,RøR(r ) (1.8)
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function. However, it also requires evaluation of many multi-
center integrals, which makes these methods difficult to apply
to large systems even for a single geometric configuration. This
prevents an efficient application of the local basis set methods
in dynamical problems, such as chemical reactions in condensed
phases, position optimization in large molecules, etc.

A different method of solution of the LSDA equations, in
which the basis{øR(r )} consists of the plane waves,

has been used in condensed matter physics. The main obstacle
in this approach is that the accurate representation of the quickly
varying valence wave functions in regions near the nucleus
requires an impracticably large number of plane waves. The
problem can be partially alleviated by the introduction of
pseudopotentials,19 where the deep Coulomb potential, the
second term of the right of (1.6), is replaced by a shallow smooth
norm-conserving pseudopotential. The pseudopotential reduces
the number of nodes in the valence wave functions and relaxes
the requirements on the size of the plane wave basis. The
availability of fast Fourier transformations (FFT) algorithms and
independence of the atomic positions in plane wave basis set
methods proves to be major advantage in the dynamical
problems. Ab initio molecular dynamics methods20 (such as the
Car-Parrinelo method8) allow a rapid update of the solution
as the geometry of the system evolves.

The major limiting factor in plane wave methods remains
the availability of smooth and transferable pseudopotentials. The
generation of a smooth pseudopotential is especially problematic
for the elements that possess strongly localized nodeless valence
orbitals. These are, for example, 2p states in O, F, 3d states in
transition metals, etc. Strictly speaking the replacement of the
actual potential with the pseudopotential should only take place
close to the nucleus. However, the small size of the replacement
volume results in steep pseudopotential if norm conservation
is retained.23 In practice, one is often forced to “soften” the
pseudopotential, i.e., extend it all the way into the bonding
region and sometimes even into the neighboring atom. This
compromises the transferability of the pseudopotential and can
lead to undesired side effects. Finally, the introduction of the
pseudopotential also results in the loss of the all-electron
information which is necessary for some applications.

Having discussed pros and cons of the local and plane wave
basis sets it is natural to conclude that a mixed basis set might
offer the best possible approach to the solution of (1.5). This
has been recognized for some time in computational solid state
and a number methods have been developed.19 Ideally, a mixed
basis method should not require an introduction of the pseudo-
potential since the rapid variation of the valence orbitals can
be described via local basis functions. On the other hand, it has
to be efficient enough to allow an implementation in dynamical
problems. An important breakthrough in this area has been made
with the introduction of the projector-augmented wave method
(PAW) by Blöchl.7 In the center of this method is a transforma-
tion that maps the solutions to (1.5) to a smoother functions
that can be expanded in plane waves. The rapidly varying
remainders of the wave functions instead of being discarded as
in pseudopotential methods are now treated with the help of
the local basis set. Unlike the pure local basis methods, the
evaluation of the multicenter integrals is avoided in PAW
method. This allows for greater flexibility in treating orbitals
with short length scales without the fear of losing relevant
physical information and retains numerical efficiency. In this
article we discuss the implementation of the PAW method and

its applications to some systems (e.g., F2, Fe2, etc.) that are
difficult to treat with norm-conserving pseudopotential methods.
Our comparison of the results of this method to norm-conserving
pseudopotential calculations and local basis set calculations
indicates the following: (i) The accuracy of the PAW is similar
to the accuracy of a local basis calculation. (ii) The convergence
with respect to the plane wave basis set leads to practical
calculations even for difficult systems (F, transition metals). (iii)
The bonding properties in transition metals are described
correctly for a wide range of bond distances, from diatomic
molecules to solids.12,15 (iv) The accuracy of the calculations
can be systematically improved by expanding the local repre-
sentation. (v) The method is robust with respect to the choice
of the local basis set. (vi) Local basis set terms in the
Hamiltonian are one center and can be precomputed so that
execution times are similar to the plane wave pseudopotential
methods.

2. Description of PAW Method

2.1. Transformation. Let us consider the Schro¨dinger
equation (1.5) for a generic atomic cluster system. It can be
observed that its solutions, the wave functions{Ψn}, share the
common behavior: they rapidly oscillate in the neighborhood
of the atomic nuclei and become fairly flat in the region between
the atoms. This suggests the division of the whole spaceΩ in
two distinct regions: the collection ofnonoVerlappingspherical
regions around each atom: atomic spheres region∪aΩa, and
the remainder, the interstitial regionΩI:

It is clear that the plane wave basis, being the ideal choice in
the interstitial regionΩI, will have great difficulties describing
the wave functionΨn(r ) in the atomic spheres region∪aΩa. In
PAW method this problem is circumvented by introducing
auxiliary wave functionΨ̃n(r ), which satisfies the following
requirements. First,Ψ̃n(r ) can be obtained fromΨn(r ) via the
invertible linear transformationΥ

Second,Ψ̃n(r ) is smooth, i.e., can be represented by plane wave
basis set of a practical size, everywhere, including the atomic
spheres region,

The first requirement ensures that the task of solving Schro¨d-
inger equation (1.5) can be equivalently reformulated in terms
of Ψ̃n(r ), whereas the second requirement allows the entire
process to be performed using the plane wave basis set.

The actual construction ofΨ̃n(r ) from a givenΨn(r ) proceeds
as follows. For each atom, we define a finite set of local basis
functions {φR

a} that is expected to accurately describe the
oscillating behavior of the relevant wave functionΨn(r ) within
the corresponding atomic sphere. Associated with{φR

a} we
introduce a set of localized projector functions{pR

a} such that

øR(r ) ) e-ikRr (1.9)

Ω ) ΩI + ∪aΩa

|Ψ̃n〉 ) Υ|Ψn〉 (2.1)

|Ψn〉 ) Υ-1|Ψ̃n〉 (2.2)

Ψ̃n(r ) ) ∑
|k|<kmax

c(k) e-ikr (2.3)

〈pâ
a|φR

a〉 ) δRâ (2.4)

pR
a(r ) ) 0, ∀r ⊂ ΩI (2.5)
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Using {φR
a} and {pR

a}, the wave functionΨn(r ) in the atomic
sphere region can be represented as

The coefficientscn,R
a in the expansion (2.6) are given by

The correction

reflects the incompleteness of set{φR
a}. As the size of the basis

{φR
a} gets larger, the local basis representation ofΨn(r ) (first

term in (2.6)) becomes more accurate, and∆n
a(r ) goes to zero.

To define a mapping intoΨ̃n(r ), we now form an auxiliary
smooth basis set{φ̃R

a} subject to the following conditions.
First, the basis functionφ̃R

a(r ) is smooth, i.e., expandable in
terms of the plane wave basis of a practical size, everywhere
including the atomic sphere region. Second,φ̃R

a(r ) merges
differentiably intoφR

a(r ) outside the atomic sphere:

Third, bothφ̃R
a(r ) and differencesφ̃R

a(r ) - φR
a(r ) form linearly

independent sets. The smooth wave functionΨ̃n(r ) can be
obtained based on the following prescription. Inside the atomic
sphere region it is generated by replacing each occurrence of
φR

a(r ) with φ̃R
a(r ) in the expansion (2.6)

whereas in the interstitial region it simply coincides with
Ψn(r ):

In more quantitative terms the transformationΥ between
Ψn(r ) andΨ̃n(r ) (see (2.1)) can be represented as

Its inverse can be obtained as

where a set of smooth projector functions{p̃R
a} is defined as

It can be shown that similar to{pR
a}, the smooth projector

functions{p̃R
a} have the following properties

Furthermore, it is straightforward to prove that

and therefore the local basis expansion coefficients (2.7) and
the remainder∆n

a (2.8) can be alternatively represented as

The above two expressions show that if the basis{φR
a}

provides an accurate local representation forΨn(r ), then the
smooth basis{φ̃R

a} provides an accurate local representation
for Ψ̃n(r ) and vice versa. This is an important observation, since
it is our objective to completely eliminateΨn(r ) and seek for
Ψ̃n(r ) directly (see section 2.3).

From a practical point of view, it is the inverse transformation
Υ-1 that plays a major role in all the applications. The
expression forΥ-1 (2.12) involves basis sets{φR

a} and {φ̃R
a}

and smooth projector functions{p̃R
a}. The prescription for their

construction is described in detail in section 3. Since for a given
{φR

a} and{φ̃R
a}, there is a unique correspondence between{pR

a}
and {p̃R

a}, the smooth projector functions{p̃R
a} can be gener-

ated directly based on (2.14) and (2.15). If desired, the projector
functions{pR

a} can then be found from

Finally, we note that smooth wave functions are only
generated for the valence states of the system. Since core states
do not participate in the bonding, they are initially imported
from the atomic calculations and kept frozen for the duration
of the calculation. Accordingly, the additional requirement is
imposed on{φR

a} to be orthogonal to all the core states.
2.2. Expectation Values.2.2.1. General Expression. Consider

the expectation value of the general local (or quasilocal) operator
A with respect to a valence wave functionΨ

Since, as we mentioned before, the wave functionΨ is highly
oscillating in the atomic sphere region, the accurate evaluation
of the expectation value in plane wave basis is impractical. Let
us rewrite (2.19) in terms of the smooth wave functionΨ̃. Using
(2.2) and (2.12) we find

where

and∆a
is given by (2.8) or (2.17). The original expression for

expectation value now splits into several parts. The first part is
a simple expectation value over the smooth wave functionΨ̃
which can be accurately calculated using plane wave basis. The
troublesome high frequency components are now hidden in the
second term.This term, howeVer, is one-center and restricted

Ψn(r ) ) ∑
R

cn,R
a

φR
a(r ) + ∆n

a(r ), ∀r ⊂ Ωa (2.6)

cn,R
a ) 〈pR

a|Ψn〉 (2.7)

|∆n
a〉 ) (1 - ∑

R
|φR

a〉〈pR
a|)|Ψn〉 (2.8)

φ̃R
a(r ) ) φR

a(r ), ∀r ⊂ ΩI (2.9)

Ψ̃n(r ) ) ∑
R

cn,R
a

φR
a(r ) + ∆n

a(r ), ∀r ⊂ Ωa (2.10)

Ψ̃n(r ) ) Ψn(r ), ∀r ⊂ ΩI

Υ ) 1 + ∑
a
∑

R
(|φ̃R

a〉 - |φR
a〉) 〈pR

a| (2.11)

Υ-1 ) 1 + ∑
a
∑

R
(|φR

a〉 - |φ̃R
a〉)〈p̃R

a| (2.12)

〈p̃R
a| ≡ ∑

â

(〈pa|φ̃a〉)Râ
-1〈pâ

R| (2.13)

〈p̃â
a|φ̃R

a〉 ) δRâ (2.14)

p̃R
a(r ) ) 0, ∀r ⊂ Ωa (2.15)

〈p̃R
a| ) 〈pR

a|Υ-1

cn,R
a ) 〈p̃R

a|Ψ̃n〉 (2.16)

|∆n
a〉 ) (1 - ∑

R
|φ̃R

a〉〈p̃R
a|)|Ψ̃n〉 (2.17)

〈pR
a| ) ∑

â

(〈p̃a|φa〉) Râ
-1〈p̃â

a| (2.18)

〈A〉 ) 〈Ψ|Â|Ψ〉 (2.19)

〈A〉 ) 〈Ψ̃|A|Ψ̃〉 + (2.20)

∑
a
∑
Râ

(〈Ψ̃|p̃R
a〉(〈φR

a|A|φâ
a〉 - 〈φ̃R

a|A|φ̃â
a〉)〈p̃â

a|Ψ̃〉) (2.21)

+ ∆〈A〉 (2.22)

∆〈A〉 ) ∑
a

[∑
R

cR
a(〈φR

a| - 〈φ̃R
a|)]A|∆a〉 +

∑
a

〈∆a|A[∑
R

(|φR
a〉 - |φ̃R

a〉)cR
a] (2.23)
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to atomic spheres region; thus, it can be easily precomputed
on the radial grids around the atoms. The last term∆ (A) appears
as a result of incompleteness of the local basis representation
and goes to zero as the size the local basis increases.
Furthermore, since the local basis representation is more accurate
near the origin of the atom, we expect∆a

(r ) become larger
away from the atom center. However, (2.9) shows that (φR

a(r )
- φ̃R

a(r )) has quite the opposite behavior, and the overlap and
therefore the correction∆〈A〉 is expected to be small. In our
calculations the effect of∆〈A〉 is neglected and the expectation
value is calculated according to

2.2.2. Orthogonality. Setting the operatorA to the identity,

reveals that the orthogonality properties of smooth wave
functions{Ψ̃n} are different from those of{Ψn}. Namely, if

then

Here the overlap operator is given by

2.2.3. Electron Density. The relationship between the valence
electron density

and its smooth image

can be obtained from (2.24) by setting

We obtain

where one-center atomic densitiesna(r ) andña(r ) are given by

From (2.6) and (2.10) it is straightforward to prove that as
∆n

a f 0

The above approximate relationships will be used in the sections
that follow.

The decomposition into smooth and atomic densities can also
be enforced for the frozen total core densitync(r ) )
∑anc

a(r - Ra)

where ñc(r ) ) ∑añc
a(r - Ra). The atom core densitync

a(r ) is
determined from a separate isolated atom calculation. The choice
of the smooth counterpartñc

a(r ) is fairly arbitrary aside from
the requirements that it has to matchnc

a(r ) outside the atomic
sphere and be smooth inside the sphere. In our calculations we
use a Gaussian form

with constantsR andâ determined by matchingnc
a(r ) andñc(r )

differentiably at the surface of the atomic sphere.
2.2.4. Kinetic Energy. Using (2.24) withA ) -1/2∇2 the

expression for the kinetic energy (1.2) follows directly as

where

and

Herefn denotes the occupation of staten. The core kinetic energy
is contained inTc and is imported from an isolated atom
calculation.

2.2.5. Hartree Energy. Using (2.27) and (2.28) the Hartree
energy (1.3) can written as

na(r ) f n(r ), ∀r ⊂ Ωa

ña(r ) f ñ(r ), ∀r ⊂ Ωa

nc(r ) ) ñc(r ) + ∑
a

[nc
a(r - Ra) - ñc

a(r - Ra)] (2.28)

ñc(r ) ) Re-âr2
/(4π)

T ) T̃ + ∑
a

(Ta - T̃a) + Tc (2.29)

T̃ ) ∑
n

fn〈Ψ̃n|- 1

2
∇2|Ψ̃n〉

Ta ) ∑
n
∑
Râ

fncnR
a/〈φR

a|- 1

2
∇2|φâ

a〉cnâ
a

T̃a ) ∑
n
∑
Râ

fncnR
a/〈φ̃R

a|- 1

2
∇2|φ̃â

a〉cnâ
a

W )
1

2
∫∫ (ñ(r ) + ñc(r ))(ñ(r ′) + ñc(r ′))

|r - r ′|
drdr ′ +

∑
a
∫∫ (ñ(r ) + ñc(r ))nloc

a (r ′)

|r - r ′|
drdr ′ +

1

2
∑

a
∑
a′

∫∫ nloc
a′ (r )nloc

a (r ′)

|r - r ′|
drdr ′ (2.30)

〈A〉 ≈ 〈Ψ̃|A|Ψ̃〉 + ∑
a
∑
Râ

(〈Ψ̃|p̃R
a〉(〈φR

a|A|φâ
a〉 -

〈φ̃R
a|A|φ̃â

a〉)〈p̃â
a|Ψ̃〉) (2.24)

〈r |Â|r ′〉 ) δ(r - r ′)

〈Ψi|Ψj〉 ) δij

〈Ψ̃i|O|Ψ̃j〉 ) δij (2.25)

O ) 1 + ∑
a
∑
Râ

|p̃R
a〉(〈φR

a|φâ
a〉 - 〈φ̃R

a|φ̃â
a〉)〈p̃â

a| (2.26)

n(r ) ) ∑
n

fn|Ψn(r )|2

ñ(r ) ) ∑
n

fn|Ψ̃n(r )|2

Â ) |r 〉〈r |

n(r ) ) ñ(r ) + ∑
a

[na(r - Ra) - ña(r - Ra)] (2.27)

na(r ) ) ∑
n

fn|∑
R

cnR
a

φR
a(r )|2

ña(r ) ) ∑
n

fn|∑
R

cnR
a

φ̃R
a(r )|2
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wherenloc
a (r ) is defined as

It is important to realize that since

the densitynloc
a (r ) is localized within the atomic sphereΩa.

The interaction of localized charge densities{nloc
a (r )} on the

differentatoms depends only on the overall multipole moments
of {nloc

a (r )} and not on its actual functional form. Thus, it is
helpful to introduce a localized compensation charge density
ncmp

a (r ) that has the same multipole moments asnloc
a (r ),

and a simple analytical form:

Hereglm
a (r ) represents a Gaussian function centered on atoma

The width of the Gaussianσa is chosen such that the compensa-
tion charge densityna

cmp(r ) is completely localized within the
atomic region. The normalization constantCl

a is fixed by the
requirement that

which leads to

The coefficientsQlm
a in (2.33) are determined from (2.32) as

Since multipole moments ofnloc
a (r ) and ncmp

a (r ) are the same,
we find that

Therefore, the Hartree energy (2.30) can be written as

wherencmp(r ) is given by

Substituting back the explicit expression fornloc
a (r )

(see (2.31)), we obtain

where

The smooth Hartree energyW̃ cannot be readily evaluated
in plane wave basis set, since the accurate representation of
compensation charge densityncmp(r ) would require a large
number of plane waves. The solution to this problem is found
by introducing a smooth compensation chargeñcmp(r ). It has
the same structure asncmp(r ),

but the width the Gaussiang̃lm
a is larger than that ofglm

a which
makesñcmp(r ) smoother. Rewriting (2.40) in terms ofñcmp(r )

nloc
a (r ) ) na(r ) - ña(r ) + nc

a(r ) - ñc
a(r ) - nZ

a(r ) (2.31)

na(r ) ) ña(r ), ∀r ⊂ ΩI

nc
a(r ) ) ñc

a(r ), ∀r ⊂ ΩI

∫Ωa
rlncmp

a (r ) Ylm
/ (r̂ ) dr ) ∫Ωa

rlnloc
a (r ) Ylm

/ (r̂ ) dr (2.32)

ncmp
a (r ) ) ∑

lm

glm
a (r ) Qlm

a (2.33)

glm
a (r ) ) gl(r) Ylm(θ,æ) ) Cl

arle-(r/σa)2
Ylm(θ,æ) (2.34)

∫glm
a (r )rlYlm

/ (θ,æ) dr ) 1

Cl
a ) 2l+2

xπ(2l + 1)!!(σa)2l+3
(2.35)

Qlm
a ) ∫Ωa

rlnloc
a (r ) Ylm

/ (r̂ ) dr (2.36)

∫∫ nloc
a′ (r ) nloc

a (r ′)
|r - r ′| drdr ′ )

∫∫ ncmp
a′ (r ) ncmp

a (r ′)
|r - r ′| drdr ′, ∀a * a′

W )
1

2
∫∫ (ñ(r ) + ñc(r ))(ñ(r ′) + ñc(r ′))

|r - r ′|
drdr ′ +

∫∫ (ñ(r ) + nc(r ))ncmp(r ′)

|r - r ′|
drdr ′ +

∑
a
∫∫ (ñ(r ) + ñc(r ))(nloc

a (r ′) - ncmp
a (r ′))

|r - r ′|
drdr ′ +

1
2∫∫ ncmp(r ) ncmp(r ′)

|r - r ′| drdr ′- (2.37)

1

2
∑

a
∫∫ nloc

a (r ) nloc
a (r ′)

|r - r ′|
drdr ′ (2.38)

ncmp(r ) ) ∑
a

ncmp
a (r - Ra)

W ) W̃ + ∑
a

(Wa - W̃a) + ∆W (2.39)

W̃ ) 1
2∫∫ ×
(ñ(r ) + ñc(r ) + ncmp(r ))(ñ(r ′) + ñc(r ′) + ncmp(r ′))

|r-r ′| drdr ′

(2.40)

Wa ) 1
2∫Ωa

∫Ωa
×

(na(r ) + nc
a(r ) - nZ

a(r ))(na(r ′) + nc
a(r ′) - nZ

a(r ′))
|r - r ′| drdr ′

W̃a ) 1
2∫Ωa

∫Ωa
×

(ña(r ) + ñc
a(r ) + ncmp

a (r ))(ña(r ′) + ñc
a(r ′) + ncmp

a (r ′))
|r - r ′| drdr ′

∆W ) ∑
a
∫Ωa

∫Ωa
×

(ñ(r ) - ña(r ) + ñc(r ) - ñc
a(r ))(nloc

a (r ′) - ncmp
a (r ′))

|r - r ′|
drdr ′

(2.41)

ñcmp(r ) ) ∑
a
∑
lm

g̃lm
a (r ) Qlm

a
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we obtain

The first and the second terms in (2.42) can now be accurately
evaluated using plane wave basis set, whereas the last term is
calculated analytically using

whereσ2 ) [(σa1)2 + (σa2)2]/2, M(a,b,z) is a Kummer’s function,1

andGli,mi;lj,mj

l,m is a Gaunt coefficient

Note that decomposition (2.42) is slightly different from the
one given by Blo¨chl.

Lastly we would like to discuss the correction∆W (see (2.41))
which is neglected in our calculations. There are two effects
that contribute to its appearance. First is the overlap of the
smooth atomic core densities, i.e.,

In all our cases this overlap was negligible. Second effect is
due to the incompleteness of the local basis set that results in
the difference between the smooth densityñ(r ) and its one-
center expansionña(r ):

Being proportional to∆n
a(r ) this difference goes with to zero as

the size of the basis increases. Furthermore, in the expression
for ∆W the effect of (2.45) is suppressed by integration with
potential

which is zero near the surface of the sphere, the place where
ñ(r ) - ña(r ) is at maximum.

2.2.6. Exchange-Correlation Energy. In the region outside
the atomic spheres the wave functionΨ̃(r ) coincides withΨ-
(r ) and

Neglecting∆n
a(r ) and the core overlap we can also establish

that

Therefore the exchange-correlation energy (1.4) can written
as

Adding and subtracting

we obtain

where

2.3. Ground State Solution.Using (2.29), (2.39), and (2.46)
the energy functional (1.1) can now be written in terms of{Ψ̃n}
as

To minimize the errors due to local basis incompleteness, it
also suggested7 to augment the energy functional (2.47) with
the auxiliary pseudopotential energy term

The potentialVja(r ) is localized entirely within the atomic sphere,
and the pseudopotential energy termV vanishes if the basis is
complete and there is no core overlap.

Given the one-to-one correspondence betweenΨn and Ψ̃n,
the ground state energy and density can now be found by
minimizing the energy functional (2.47) with respect toΨ̃n

W̃ ) 1
2∫∫ ×

(ñ(r ) + ñc(r ) + ñcmp(r ))(ñ(r ′) + ñc(r ′) + ñcmp(r ′))
|r - r ′| drdr ′ +

∫∫ (ñ(r ) + ñc(r ) + ñcmp(r ))(ncmp(r ′) - ñcmp(r ′))
|r - r ′| drdr ′ +

1
2∫

(ncmp(r ) - ñcmp(r ))(ncmp(r ′) - ñcmp(r ′))
|r - r ′| drdr ′ (2.42)

∫∫
gl1m1

a1 (r1 - R)gl2m2

a2 (r2)

|r1 - r2|
dr1dr2 )

(-1)l2∑
lm

Rlil1+l2+l

σl+l1+l2+1

(2π)5/2 2-(l+l1+l2+2)/(2)Γ(l + l1 + l2

2
+

1

2)
Γ(l1 +

3

2)Γ(l2 +
3

2)Γ(l +
3

2)
[(-1)m1Gl1-m1,l2m2

lm ]Ylm(R̂)M(l + l1 + l2

2
+

1

2
, l +

3

2
, -

R2

2σ2)
(2.43)

Gli,mi;lj,mj

l,m ) ∫ Ylm
/ (r̂ )Yli,mi

(r̂ )Ylj,mj

/ (r )dr̂ (2.44)

ñc(r ) * ñc
a(r ), ∀r ∈ Ωa

ñ(r ) - ña(r ) ) 2Re[∑
R

cn,R
a 〈φ̃R

a|∆n
a〉] + |∆n

a(r )|2 (2.45)

∫Ωa

nloc
a (r ′) - ncmp

a (r ′)
|r - r ′| dr ′

n(r ) + nc(r ) ) ñ(r ) + ñc(r ), ∀r ∈ ΩI

n(r ) + nc(r ) ) na(r ) + nc
a(r ), ∀r ∈ Ωa

Exc ) ∫ΩI
εxc(ñ + ñc)(ñ(r ) + ñc(r )) dr +

∑
a
∫Ωa

εxc(n
a(r ) + nc

a(r ))(na(r ) + nc
a(r )) dr

∑
a
∫Ωa

εxc(ñ + ñc)(ñ(r ) + ñc(r )) dr )

∑
a
∫Ωa

εxc(ñ
a + ñc

a)(ña(r ) + ñc
a(r )) dr

E ) Ẽxc + ∑
a

(Exc
a - Ẽxc

a ) (2.46)

Ẽxc ) ∫ εxc(ñ + ñc)(ñ(r ) + ñc(r )) dr

Exc
a ) ∫Ωa

εxc(n
a + nc

a)(na(r ) + nc
a(r )) dr

Ẽxc
a ) ∫Ωa

εxc(ñ + ñc)(ñ(r ) + ñc(r )) dr

E[{Ψ̃n}] ) T̃ + Tc + W̃ + Ẽxc + ∑
a

(Ta + Wa + Exc
a ) -

∑
a

(T̃a + W̃a + Ẽxc
a ) (2.47)

V ) ∫(∑
a

Vja(r ))(ñ(r ) + ñc(r )) -

∑
a
∫ Vja(r )(ña(r ) + ñc

a(r )) dr
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subject to the constraints (see (2.25))

Implementing the above constraints via Lagrange multipliers
εij, we obtain

Differentiation with respect toΨ̃n yields the following Schro¨-
dinger-like equation

Via the unitary transformation among{Ψ̃i}, the above equation
can be cast into the form similar to (1.5) as

where{εi} are the eigenvalues of the Lagrange multiplier matrix
εij.

The smooth part of the Hamiltonian in (2.50) is given by

where

The one-center atomic contributions are given by

with

The multipole potential

stems from the dependence of the total energy on the compensa-
tion charge density. The coefficients (Vq

a)lm are given by

The first two terms are evaluated using plane wave basis set;
third term, analytically using (2.43); and the fourth term, on
the radial grids around the atoms.

With the typical basis set size is of the order of tens of
thousands plane waves a direct diagonalization of the equation
(2.51) is impractical. The more sensible approach is to use one
of the several iterative methods19 to the minimization problem
(2.50). A simple steepest descent method was used in this work.
All of these methods require the calculation of the gradient

The smooth part of the gradientH̃|Ψ̃n) can be found via standard
technique found in pseudopotential methods.20 Namely, given
the wave function and the smooth potentialṼ(r ), Gn(k) can be
evaluated as

where FFT[...] denotes fast Fourier transformation intok space.
To calculate the local part of the gradient

it is helpful to precompute the following matrix elements

(Vq
a)lm ) ∫∫ glm

a (r )(ñ(r ′) + ñc(r ′) + ñcmp(r ′))
|r - r ′| drdr ′ +

∫∫ g̃lm
a (r )(ncmp(r ′) - ñcmp(r ′))

|r - r ′| drdr ′ +

∫∫ (glm
a (r ) - g̃lm

a (r ))(ncmp(r ′) - ñcmp(r ′))
|r - r ′| drdr ′ -

∫Ωa
∫Ωa

glm
a (r )(ña(r ′) + ñc

a(r ′) + ncmp
a (r ′))

|r - r ′| drdr ′

|Gn〉 ) H̃|Ψ̃n〉 + ∑
a

(Ha - H̃a)|Ψ̃n〉

Gn(k) ) - k2

2
Ψ̃n(k) + FFT[Ṽ(r )Ψ̃n(r )]

|Gn
a〉 ≡ (Ha - H̃a)|Ψ̃n〉 (2.54)

(na) Râ
l ) ∫0

rc
a

φnRlR

a (r)φnâlâ

a (r)rldr

(ña) Râ
l ) ∫0

rc
a

φ̃nRlR

a (r)φ̃nâlâ

a (r)rldr

(VZ
a)Râ ) ZδmRmâ

δlRlâ∫0

rc
a
φnRlR

a
φnâlâ

a

r
dr

(Ṽa)Râ ) δmRmâ
δlRlâ∫0

rc
a

Ṽa(r)φnRlR

a
φnâlâ

a dr

(Vcore
a )Râ ) δmRmâ

δlRlâ
4π∫0

rc
a ∫0

rc
a 1
r>

{φnRlR

a (r)φnâlâ

a (r)nc(r′) -

φ̃nRlR

a (r)φ̃nâlâ

a (r)ñc(r′)}drdr′

(Vcomp
a ) Râ

l ) 4π
2l + 1∫0

rc
a ∫0

rc
a

φ̃nRlR

a (r)φ̃nâlâ

a (r)
r<

l

r>
l+1

gl
a(r′)r′2dr′dr

(ta)Râ )
δmRmâ

δlRlâ

2 ∫0

rc
a{(φnRlR

a )′(φnâlâ

a )′ - (φ̃nRlR

a )′(φ̃nâlâ

a )′ +

lR(lR + 1)
φnRlR

a
φnâlâ

a - φ̃nRlR

a
φ̃nâlâ

a

r2 }dr

〈Ψ̃i|O|Ψ̃j〉 ) δij (2.48)

δ

δΨ̃n

(E[{Ψ̃n}] - ∑
ij

εij〈Ψ̃i|O|Ψ̃j〉) ) 0 (2.49)

(H̃ + ∑
a

(Ha - H̃a))|Ψ̃i〉 ) ∑
j

εijO|Ψ̃j〉, (i ) 1, ...,N)

(2.50)

(H̃ + ∑
a

(Ha - H̃a))|Ψ̃i〉 ) εiO|Ψ̃i〉, (i ) 1, ...,N) (2.51)

H̃(r ) ) - 1
2
∇2 + Ṽ(r )

Ṽ(r ) ) ∫ ñ(r ′) + ñc(r ′) + ncmp(r ′)

|r - r ′|
dr ′ +

Vxc[ñ + ñc] + ∑
a

Vja(r )

Ha ) ∑
a
∑
Râ

|p̃R
a〉〈φR

a|ha + Vq
a|φâ

a〉〈p̃â
a| (2.52)

H̃a ) ∑
a
∑
Râ

|p̃R
a〉〈φ̃R

a|h̃a + Vq
a + Vja|φ̃â

a〉〈p̃â
a| (2.53)

ha(r ) ) - 1
2
∇2 + ∫ na - nZ

a + nc
a

|r - r ′| dr ′ + Vxc[n
a + nc

a]

h̃a(r ) ) - 1
2
∇2 + ∫ ña + ñc

a + ncmp
a

|r - r ′| dr ′ + Vxc[ñ
a + ñc

a]

Vq
a(r ) ) ∑

lm

(Vq
a)lmr lYlm

/ (r̂ )
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where the following representation for PAW basis was assumed:

with R as compound index (nRlRmR).
In this notation the local part of the gradient takes the form

where

Since Gaunt coefficientGlRmR,lâmâ

lm (defined in (2.44)) is nonzero
only if all the following conditions are satisfied:

the summation over orbital momenta can be greatly reduced.
Currently the exchange-correlation matrix element (Vxc

a ) Râ
lm is

recalculated at each step in the self-consistent process as

The calculation of (Vxc
a ) Râ

lm can be simplified via Taylor expan-
sion around the dominantl ) 0 term.7

3. Generation of the Local Basis Set

Construction of the local basis set is an important step in the
PAW method and determines the success of the subsequent
calculations. In the present work we have closely followed the
procedure suggested by Blo¨chl7 (for other approaches see

Holzwarth et al.12,13). To determine the local basis set{φR
a},

we performed a self-consistent spin-restricted spherically sym-
metric calculation for a given atom. This calculation provides
the bound state valence orbitals that constitute the main part of
the basis{φR

a}. The rest of the basis set{φR
a} comes from

scattering states at specific energies, which are obtained by the
outward integration of the Schro¨dinger equation with the already
determined Kohn-Sham potential. Once{φR

a} is found, the
smooth basis set{φ̃R

a} is constructed similar to the method that
is used to obtain Hamman pseudopotential. LetVa(r) denote the
Kohn-Sham potential obtained from the earlier calculation of
{φR

a}:

We now introduce a smooth potentialṼa(r) defined such that
Ṽa(r) ≈ Va(r) outside the atomic sphere radiusRa. The actual
functional form ofṼa(r) inside the atomic sphere could be chosen
in many different ways. In the present work for all the elements
excluding transition elements we use

whereλ is usually set to 6 and the cutoff radiusrk
a is chosen

such that e-(r/rk)λ ≈ 0 for r > Ra. For transition metal elements
we use

where parametersṼ1 and Ṽ2 are adjusted suchṼa(r) merges
smoothly intoVa(r) on the surface of the sphere (r ) rk

a). In
both cases the parameterṼ0

a varies for different elements and is
used to improve the scattering properties. Once the smooth
potentialṼa(r) is defined, the basis function,φ̃R

a(r ), is found as
solution of the differential equation

The parameterci
a is adjusted so that

Since potentialVa(r) is spherically symmetric bothφ̃R
a(r ) and

φR
a(r ) can be represented as

where nodal structure ofφ̃nRlR

a (r) is such that for given orbital
momentumlR the lowest energy orbital has zero nodes, the next
lowest, one node, and so on.

The set of projector functions{p̃R
a} is obtained from{φ̃R

a} as

(VH
a ) Râµν

l ) 4π
2l + 1∫0

rc
a ∫0

rc
a r<

l

r>
l+1

{φnRlR

a (r)φnâlâ

a (r)φnµlµ

a (r′) ×

φnνlν

a (r′) - φ̃nRlR

a (r)φ̃nâlâ

a (r)φ̃nµlµ

a (r′)φ̃nνlν

a (r′)}drdr′

φR
a(r ) )

φnRlR

a (r)

r
YlRmR

(θ,æ)

φ̃R
a(r ) )

φ̃nRlR

a (r)

r
YlRmR

(θ,æ) (2.55)

p̃R(r ) )
p̃nRlR

a (r)

r
YlRmR

(θ,æ)

Gn
a(r ) ) ∑

Râ

|p̃R
a〉(Gn

a)Râcnâ
a

(Gn
a)Râ ) (ta)Râ + (VZ

a)Râ + (Vcore
a )Râ + (Vja)Râ +

∑
lm

GlRmR,lâmâ

lm Qlm
a (Vcomp

a ) Râ
l +

∑
lm

GlRmR,lâmâ

lm (Vq
a)lm((na) Râ

l - (ña) Râ
l ) +

∑
lm

∑
lµmµ

∑
lνmν

GlRmR,lâmâ

lm (VH
a ) Râµν

l Glµmµ,lνmν

lm (∑
n′

fn′cn′µ
a/ cn′ν

a ) +

∑
lm

GlRmR,lâmâ

lm (Vxc
a ) Râ

lm

m - mR + mâ ) 0

|lR - lâ| e l e lR + lâ

mod(l + lR + lâ, 2) ) 0

(Vxc
a ) Râ

lm ) ∫0

rc
a

[φnRlR

a (r)Vxc
lm(r)φnâlâ

a (r) - φ̃nRlR

a (r)Ṽxc
lm(r)φ̃nâlâ

a (r)] dr

Vxc
lm(r) ) ∫ Vxc[n

a + nc
a]Ylm

/ (r̂ ) dr̂

Ṽxc
lm(r) ) ∫ Vxc[ñ

a + ñc
a]Ylm

/ (r̂ ) dr̂

(- 1
2
∇2 + Va(r))φR

a(r ) ) εR
a

φR
a(r ) (3.1)

Ṽa(r) ) (1 - e-(r/rk
a)λ

)Va(r) + Ṽ0e
-(r/rk

a)λ
(3.2)

Va(r) ) Ṽ0
a + Ṽ1

ar2 + Ṽ2
ar4 (3.3)

(- 1
2
∇2 + Ṽa(r) + ci

ae-(r/rk
a)λ

- εi)φ̃R
a(r ) ) 0 (3.4)

φ̃R
a(Ra) ) φR

a(Ra)

dφ̃R
a(r )

dr |
r)Ra

)
dφR

a(r )

dr |
r)Ra

φ̃R
a(r ) )

φ̃nRlR

a (r)

r
YlRmR

(r̂ )

φR
a(r ) )

φnRlR

a (r)

r
YlRmR

(r̂ )

p̃R
a(r ) ) (- 1

2
∇2 + Ṽa(r) - εi)φ̃R

a(r )
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Since

it follows from (3.4) that{p̃R
a} are indeed localized within the

atomic sphere region. Finally we used the Gram-Schmidt
method7 to transform all three sets{φR

a}, {φ̃R
a}, and{p̃R

a} such
that

Note that this last step scrambles basis sets{φR
a} and{φ̃R

a} and
that they no longer satisfy (3.1) and (3.4).

Additional quantities that are determined in this part of the
calculations are the core densitiesnc

a(r), ñc
a(r), the width of the

compensation chargeσa, and the local potentialVja(r). The
smooth core density is chosen to be of the form

It is matched to true core densitync(r) at the radiusRa:

The compensation charge widthσa is calculated such that the
atom compensation charge density

is nearly zero at the surface of the atomic sphere. The multipole
momentQ00

a is determined as

whereZa is the atomic charge and the densitiesna(r) andña(r)
are obtained by summing over theunscrambled(before the
Gram-Schmidt procedure above) valence orbitals and their
smooth images

The local potentialVj(r) is obtained as

4. Results

In the following we assess the accuracy and efficiency of
the PAW method by comparing the results with various other
LSDA calculations such as norm-conserving pseudopotential,
local basis, and finite grid calculations. The results we present
here show that as far as numerical accuracy is concerned the
method performs quite well. For a same number of plane waves
our present PAW code is a factor of 1.5 slower than our most
efficient pseudopotential code. The situation can certainly be
improved since our pseudopotential code has been optimized
by continuous use for the past several years, whereas the PAW
code is still in the development stage. However, even at this
level of performance, the PAW method has an advantage over
norm-conserving pseudopotential methods for transition metal
elements, since it requires a much smaller plane wave basis
set.

Since our effort is to understand the convergence properties
of the method rather than to predict properties, most of the
molecules and atoms chosen for calculation have been selected
because they have been extensively studied by other LSDA
methods and because they present problem cases for the
application of norm-conserving pseudopotentials. In all the
calculations, the size of the cubic simulation cell was set at 20
au and the exchange-correlation functional was based on VWN
parametrization.24 It is well-known that the LSDA approximation
significantly overestimates bond energies of diatomic molecules,
especially in case of transition metal elements. As our objective
was to observe the performance of PAW as a method for solving
the LSDA equations, any discussions of improvements in LSDA,
gradient corrections, etc., are left for future work.

4.1. Atoms.The accuracy of the PAW method depends on
two factors: the completeness of the plane wave basis set with
respect to the smooth wave functions{Ψ̃n} and the completeness
of the local basis set{φi

a} in the atomic sphere region. The
magnitude of these errors can be efficiently assessed by studying
the results of PAW calculations for isolated atoms. (See Figure
1.)

The size of the plane wave basis is typically characterized
by the energy cutoff, the kinetic energy of highest plane wave
in the basis. As the energy cutoff increases, the errors due to
incompleteness of the plane wave basis become smaller.
However, a large energy cutoff can lead to unrealistically long
execution times. In the PAW method the plane wave basis errors
are determined the smoothness of basis set{φ̃R

a}, since in order
for various cancellations to occur the plane wave basis
representation of{φ̃R

a} should be equivalent to that on the
radial grid around the atom. The smoothness of the basis{φ̃R

a}
depends on the size of the atomic sphere as well as the strength
of the effective atomic potential. Our choice for the radius of
the atomic sphere was around half the bond length of the
corresponding homonuclear diatomic molecule. The conver-
gence of total energy calculated with the PAW method as a
function of the energy cutoff for various isolated atoms is shown
in Figure 2.

As expected, the total energy errors correlate with the size
of atomic spheres and the effective atomic charge. Owing to a
large sphere size of 2.28 au and small effective charge, Be,
which is easily handled by norm-conserving pseudopotential
calculations,25 achieves a 10-3 Ha (∼0.03 eV) error in total

TABLE 1: Parameters Used in the Construction of Local
Basis Seta

element basis
Ra

(au)
rk

a

(au)
σa

(au)
Ṽ0

a

(au)

Ha 1s 0.35 0.25 0.076 -3.43
Hb 1s, 2p(0.0) 0.35 0.25 0.076-3.43
Be 2s, 2p 2.28 1.62 0.544 0.64
C 2s, 2p 1.2 0.85 0.26 -2.80
Oa 2s, 2p 1.09 0.89 0.24 -3.24
Ob 2s ,2p, 3s(1.0), 3p(1.0) 1.09 0.89 0.24-3.24
Oc 2s, 2p, 3s(1.0), 3p(1.0), 3d(0.5) 1.09 0.89 0.24-3.24
Fa 2s, 2p 1.24 0.89 0.274-1.93
Fb 2s, 2p, 3s(0.0), 3p(1.0) 1.24 0.89 0.274-1.81
Fc 2s, 2p, 3s(0.0), 3p(1.0), 3d(0.0) 1.24 0.89 0.274-1.81
Cr 3s, 3p, 3d, 4s, 4p, 4d(1.0) 1.49 1.10 0.326-2.58
Fe 3s, 3p, 3d, 4s, 4p, 4d(1.0), 5s(1.0) 1.78 1.27 0.393-2.99

a Numbers in round brackets in the second column denote the energy
of the scattering states.

Ṽa(r) ) Va(r), ∀r > rk
a

∫ (p̃R
a(r ))* φ̃â

a(r ) ) δRâ

ñc(r) ) Re-âr2
/(4π) (3.5)

ñc(R
a) ) nc(R

a)

dñc(r )

dr |
r)Ra

)
dnc(r)

dr |
r)Ra

ncmp
a (r ) ) g00

a (r )Q00
a

Q00
a ) 1

x4π
∫Ωa

(na(r) - ña(r) + nc
a(r) - ñc

a(r)) dr - Za

na(r) ) ∑
R

fR|φR
a(r)|2

ña(r) ) ∑
R

fR|φ̃R
a(r)|2

Vja(r) ) Ṽa(r) - ∫ ña + ñc
a + ncmp

a

|r - r ′| dr ′ - Vxc[ñ
a + ñc

a]
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energy with a cutoff of as little as 12 Ry. F represents an the
extreme case of a system on the right-hand side of the periodic
table, and in the first row, this element has a very high effective
atom electron potential. Like other elements in the first row,
the 2p orbital does not have to be orthogonal to an earlier p
orbital and, therefore, effectively penetrates the core. Both these
effects lead to the necessity of a strong norm-conserving
pseudopotential for the p component of the wave function and
resulting difficulties with plane wave convergence. In this case
the PAW converges to a millihartree by 60 Ry. A similar
convergence calculation14 for the soft Troulier-Martins poten-
tial22 (cutoff radius 1.2 au) requires 150 Ry, a cutoff which
would lead to an very large plane wave basis. Transition metal
element Cr, with the small sphere size of 1.49 au and a large
effective charge, requires 80 Ry for an accuracy of two
millihartree. This accuracy is beyond that of the LSDA
approximation. Calculations including dynamics with 80 Ry
cutoff are now appearing.26,33The above energy cutoffs can be
reduced by increasing the size of the atomic sphere. However,
large atomic sphere size can lead to overlap errors in dimers
and cluster systems. It may also increase errors due to local
basis incompleteness, since the local basis representation of the
wave function will be required to cover a larger region of space.

Similar to pseudopotentials, the PAW method will reproduce
the isolated atom energies by construction. However, when the
atom is inserted into the solid or molecule plane, the wave
function will mix in a way different from that in the isolated
atom. How well the correct (all-electron) mixing is reproduced
in the new environment depends on the transferability of
pseudopotential or the completeness of the local basis set in
the PAW method. A common measure of the pseudopotential
transferability is the comparison of the scattering properties of
the pseudopotential and all-electron calculations. The same
comparison in the PAW method serves a measure of the quality
of the local basis representation of the PAW Hamiltonian. To
perform this test, a scattered state problem for the PAW
Hamiltonian is solved on a radial grid around the atom. The
logarithmic derivative of the PAW scattering state is then
compared to that of all-electron scattering state. Results of such
calculations for the fluorine atom are shown in Figure 3. A
minimal basis set (Fa set in Table 1), containing one function
per angular momentum channel, provides a satisfactory descrip-
tion of the scattering properties (see left part in Figure 3). The
scattering properties using an expanded basis set (Fb set in Table
1), containing two functions per angular momentum, are given
in the right panel in Figure 3 and show convergence toward
the all-electron result. The same trends have been observed for
other elements, illustrating that the local basis description in
the PAW method improves as the size of the basis set grows.

4.2. Homonuclear and Heteronuclear Diatomic Molecules.
4.2.1. Second-Row Dimers. The second row diatomic molecules
provide a good test for the PAW method, since these systems
have been thoroughly investigated by a variety of LSDA
methods.4,16,21Our main objectives were to assess the accuracy
of the PAW method, the robustness with respect to different
local basis sets, and the convergence with respect to the plane
wave basis set. Since LSDA is used without gradient corrections
in these calculations, the calculated bond energies reported are
expected to be considerably larger than the experimental energy.
Therefore, comparisons are made with the other LSDA calcula-
tions. Unless noted otherwise, all the LSDA calculations were
based on VWN24 parametrization of the exchange-correlation
functional.

We start with an H2 dimer. The highly localized nature of 1s
orbital and small atomic radius requires a relatively large plane

Figure 1. PAW basis for Cr: all-electron local basis functions, thin
solid lines; smooth local basis, thick solid lines; projectors, dashed lines.

Figure 2. Plane wave convergence for the atomic total energies. dE
defined as an absolute energy difference with the respect to the total
energy at 100 Ry. Size of the simulation cell was set at 20 au.

Figure 3. Comparison of the logarithmic derivatives of PAW and all-
electron methods evaluated at the distance of 1.24 au. Left part refers
to the setup Fa in Table 1; right part refers to the setup Fb in Table 1.
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wave basis set. In our calculation we used an energy cutoff of
60 Ry. The local basis consisted of single 1s orbital. As reported
in Table 2, the PAW results agree very well with the other
LSDA calculations.

Next we have calculated second-row homonuclear molecules,
Be2, C2, O2, and F2, using 2s, 2p local basis set. The
distinguishing feature of second-row elements is a gradual
localization of 2s, 2p valence orbitals (see Figure 4) across the
periodic table.

Located on the left-hand side of the periodic table, Be has
fairly diffuse electronic states and can be easily treated via plane
wave pseudopotential methods.25 In our calculation of Be2 (see
Table 3) we have used a cutoff of 25 Ry. As one moves to the
right the electronic states become more and more localized (see
Figure 4), and by F the problem becomes quite difficult for
norm-conserving pseudopotential methods. Such behavior can
be accommodated by the PAW method since the rapidly varying
localized components of the orbitals are projected out using the
local basis set. In our calculations of C2, O2, and F2 molecules
(see Tables 4-6) we have used a cutoff of 60 Ry.

Overall, as the results in Tables 3-6 indicate, even with the
small (2s, 2p) local basis set the PAW method can provide
accurate LSDA results across the second row of the periodic

table. The errors due to local basis set incompleteness (see
(2.23)) in PAW method should become more accurate as the
size of the basis increases. We have demonstrated before that
the scattering properties of the fluorine atom improve as the
local basis set grows. Here, we studied the change in the ground
state properties of O2, F2 as the basis size increased. The results
in Tables 7 and 8 indicate the addition of the 3s and 3p functions
results in better agreement with the results by Painter and
Averill 16 and Becke.4 Further addition of 3d basis function has
little effect. The improvement of the binding energy for a bigger
basis set is only of the order of 0.1 eV. This means that the
minimal 2s, 2p basis set already offers a good description of
the atomic sphere region in the second-row elements.

We have also performed a PAW calculation of HF molecule.
The energy cutoff was set at 60 Ry. Strong ionic character of
this molecule serves as a good test of the accuracy and
robustness of PAW local basis set. The local basis set for F
consisted of 2s and 2p orbitals; the basis set for H was varied
from single 1s orbital to 1s, 2p orbitals. In both cases, the PAW

TABLE 2: Spectroscopic Properties of H2 Molecule (1Σ)
Calculated with Different LSDA Methodsa

method R (au) De (eV) w (cm-1)

this PAW (Ha) 1.46 4.86 4172
Gaussian16 1.45 4.91 4277
PAW (Blöchl)7 1.46 4.62 4040
finite grid4 1.45 4.9 4190

a PAW local basis set consisted of single 1s orbital, see Table 1.
Blöchl’s calculation uses Perdew-Zunger parametrization of the
exchange-correlation functional.

Figure 4. Localization of s and p orbitals for the second-row elements.

TABLE 3: Spectroscopic Properties of Be2 Molecule (1Σ)
Calculated with Different LSDA Methodsa

method R (au) De (eV) w(cm-1)

this PAW 4.62 0.49 350
Gaussian16 4.63 0.5 362
PAW (Blöchl)7 4.51 0.53 367
finite grid4 0.56

a PAW local basis set consisted of 2s, 2p orbitals, see Table 1.
Blöchl’s calculation uses Perdew-Zunger parametrization of the
exchange-correlation functional.

TABLE 4: Spectroscopic Properties of C2 Molecule (1Σ)
Calculated with Different LSDA Methodsa

method R (au) De (eV) w (cm-1)

this PAW 2.37 7.27 1736
finite grid4 2.35 7.3 1880
Gaussian16 2.36 7.19 1869
pseudopotential26 2.34 7.17 1849

a PAW local basis set consisted of 2s, 2p orbitals, see Table 1.
Pseudopotential numbers correspond to psp 1 potential at 67 Ry.

TABLE 5: Spectroscopic Properties of O2 Molecule (3Σ)
Calculated with Different LSDA Methodsa

method R (au) De (eV) w(cm-1)

this PAW 2.31 7.32 1571
PAW (Blöchl)7 2.32 7.33 1660
Gaussian16 2.30 7.54 1563
finite grid4 2.27 7.6 1620

a PAW local basis set consisted of 2s, 2p orbitals, see Table 1.
Blöchl’s calculation uses Perdew-Zunger parametrization of the
exchange-correlation functional.

TABLE 6: Spectroscopic Properties of F2 Molecule (1Σ)
Calculated with Different LSDA Methodsa

method R (au) De (eV) w (cm-1)

this PAW (Fa) 2.66 3.23 1106
PAW (Blöchl)7 2.67 3.11 1148
pseudopotential (118 Ry)14 2.58 3.30
Gaussian16 2.62 3.32 1069
finite grid4 2.61 3.4 1060

a PAW local basis set consisted of 2s, 2p orbitals, see Table 1.
Blöchl’s calculation uses Perdew-Zunger parametrization of the
exchange-correlation functional.

TABLE 7: Spectroscopic Properties of O2 Molecule (3Σ) for
Different PAW Local Basis Sets

basis set R (au) De (eV) w (cm-1)

2s, 2p 2.31 7.32 1571
2s, 2p, 3s(1.0), 3p(1.0) 2.30 7.42 1583
2s, 2p, 3s(0.0), 3p(1.0), 3d(0.5) 2.29 7.44 1582

TABLE 8: Spectroscopic Properties of F2 Molecule (1Σ) for
Different PAW Local Basis Sets

basis set R (au) De (eV) w (cm-1)

2s, 2p 2.66 3.23 1106
2s, 2p, 3s(0.0), 3p(1.0) 2.64 3.32 1108
2s, 2p, 3s(0.0), 3p(1.0), 3d(0.0) 2.64 3.33 1109
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results agree very well with finite grid calculations by Becke5

(see Table 4).
Since the norm conservation step is omitted while generating

smooth local basis set{φ̃R
a}, the PAW method is expected to

yield a better convergence with respect to the size of the plane
wave basis set than norm-conserving pseudopotential methods.19

Using a minimal basis set consisting of 2s, 2p orbitals (setup
Fa in Table 1), we have performed PAW calculation of the
binding energy of F2 for the plane wave basis sets with the
different energy cutoffs. The comparison of these results with
the similar plane wave pseudopotential calculations14 is shown
in Figure 5. The pseudopotential calculations were based on
Troullier-Martin pseudopotential22 with the cutoff radius of 1.2
au, which is close to PAW cutoff radius of 1.24 au. As shown
on Figure 5, the PAW results were well converged within a
millihartree by 60 Ry, whereas a cutoff of 140 Ry was necessary
to get the same accuracy with the norm-conserving pseudopo-
tential approach. This represents a substantial improvement in
efficiency, since doubling the plane wave basis cutoff increases
the number of plane waves in the basis by approximately a factor
of three. Similar convergence has been observed when the local
basis set was increased to include 3s, 3p orbitals. This is not
surprising since the plane wave convergence depends on the
smoothness of the auxiliary basis set{φ̃R

a} which is controlled
by the size of the atomic sphere. Increase in the local basis set
improves the approximation used to obtain (2.24).

It should be noted that the convergence of the pseudopotential
methods can be greatly improved be removing the norm
conservation condition via Vanderbilt’s ultrasoft pseudopoten-
tials.23 As discussed by Blo¨chl7 and later by Kresse and
Joubert,15 there are certain similarities between PAW method

and ultrasoft pseudopotentials. From a numerical point of view
both methods should have roughly the same efficiency. How-
ever, there are several advantages associated with all-electron
nature of PAW approach. First, the issue of parameterizing the
pseudopotential is avoided in PAW. This can be quite difficult
in Vanderbilt’s method.15 Second, the accuracy of the PAW
method (within the LSDA approximation) can by systematically
improved by increasing the size of the local basis set. Third,
the PAW method provides all-electron Kohn-Sham wave
functions that are necessary in certain applications.18

4.2.2. Transition Metal Dimers. The third-row transition
metals are among the most difficult elements to describe with
plane wave pseudopotential methods. These atoms containl )
0 components with several nodes that extend to large distances
as well as tightly bound (nodeless)l ) 2 states that are well
localized close to the core. For example, (see Figure 1), for Cr
the 3d atomic functions has an outer maximum at about 1.3 au
(see Figure 1) and the loosely bound 4s function has an outer
maximum at 3 au. Simultaneous description of these two
different length scales is difficult with norm-conserving pseudo-
potentials. The proper treatment of both 3d and 4s states is
important in transition metal dimers. In addition there is a
substantial overlap of localized 3d orbitals with the core states
which makes separation of the core and valence density in
pseudopotential calculations problematic.2 As a result, the
majority of ab initio calculations for these systems are performed
using the local basis set methods.

In this work we have investigated two transition metal dimer
systems, Cr2 and Fe2. In both calculations the energy cutoff was
set at 60 Ry.

The chromium dimer Cr2 has a short bond length of about
3.2 au, accordingly the atomic sphere radius for the generation
of the PAW set was set to 1.5 au. At such small bond distance
there is a significant overlap between 3s and 3p semicore states
on the neighboring atoms, which prompted their inclusion in
local basis set (see Table 1) along with 3d and 4s states. In
agreement with the other LSDA calculations,3 our PAW
calculation reveals that for Cr2, the ground state configuration,

exhibits a spin symmetry breaking, i.e., in a given molecular
orbital spin-up and spin-down electrons are concentrated on the
opposite atoms in a dimer. The calculated equilibrium bond
distance was 3.04 au with the binding energy of 3.24 eV. The
comparison of these results with other calculations is given in
Table 10. In all the calculations the LSDA approximation
significantly overestimates the binding energy of Cr2 as
compared to the experimental value. Considering the rather large
discrepancies in energy between the various local basis calcula-
tions the PAW calculation is within the accuracy of present
LSDA calculations.

TABLE 9: Spectroscopic Properties of HF Molecule
Calculated with Different LSDA Methodsa

method R (au) De (eV) w (cm-1)

PAW (Ha, Fa) 1.77 7.02 4192
PAW (Hb, Fa) 1.77 7.02 4182
finite grid5 1.77 7.0 4143
APW21 1.76 6.23 3990
pseudopotential (118 Ry)14 1.75 7.03

a The APW calculation by Serena and Baratoff was based on Hedin
and Lundqvist parametrization, and the rest of the calculations were
based on VWN24 parametrization of the exchange-correlation func-
tional.

Figure 5. Comparision of the total energy convergence for F dimer
using PAW method (setup Fa) and Troullier-Martin pseudopotential
calculation.17

TABLE 10: Equilibrium Properties of Cr 2 Molecule
Calculated with Different LSDA Methods

R (au) De (eV)

PAW 3.05 3.1
finite grid4 3.0
DMOL27a 3.21 1.8
Gaussian (all-electron)17 3.27 2.4
Gaussian (with pseudopotential)6 3.21 2.8
Gaussian (all-electron)3 3.17 2.6
exptl 3.17 1.56

a DMOL calculation was based on von Barth-Hedin functional.

πu(d)4σg(d)2δg(d)4σg(s)2
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The different length scales of the 4s and 3d functions lead to
an interesting variation in the molecular orbital ordering as a
function of bond length. For small bond lengths, the 3d orbitals
overlap strongly and the lowest molecular orbital has a large
3d component. On the other hand, for longer bond lengths the
4s interaction are strongest and the lowest molecular orbital has
a large 4s component. To describe chemical processes with
various bond lengths, it is important to get the right balance
between 3d and 4s bonding. The orbital ordering for Cr2 as a
function of bond distance is given in Figure 6. The ordering
predicted by PAW method agrees well with all-electron Gauss-
ian calculation by Baykara, McMaster, and Salahub.3 The
crossover between lowestπ and σ occurs around 3.6 au
compared to 3.7 au as obtained by Baykara, McMaster, and
Salahub.3

The Fe2 dimer has a slightly larger bond length than Cr2 which
allows for a smoother basis. Consistent with local basis
calculations PAW predicts that the lowest energy configuration
in Fe2 is ferromagnetic with the total spin 3 and the valence
configuration given by

The calculated bond distance of 3.70 au and frequency 464
cm-1, which is in good agreement with other LSDA calculations.

There is less agreement regarding the LSDA values for the
binding energy. The situation is complicated by the choice of
the reference configuration of the isolated atom Fe(3d64s2). As
reported in Table 12, if no spherical symmetry is imposed on

the reference atoms, we obtain the binding energy of 2.74 eV,
which is close to the 2.89 eV result of Dhar and Kestner29 who,
as we understand, also did not impose any symmetry on the
reference atom. Our binding energy with regard to spherically
symmetric Fe atom is 4.49 eV, which is close to the 4.38 eV
result of the Gaussian calculation of Castro, Jamorski, and
Salahub9 who also use spherically symmetric atom and the same
VWN24 parametrization of the exchange-correlation functional.
This answer for the binding energy differs by 0.5 eV from the
PAW result of Blöchl who has used a different local basis set
(see Table 1 in ref 7) and a different (Perdew-Zunger)
parametrization of the exchange-correlation functional. Similar
to the case of Cr2 LSDA value for binding energy again results
in a severe overestimation of the experimental results (1.14 eV,30

1.30 eV31).

5. Conclusion

The accurate description of the potential surface between
reacting species continues to be a central problem in the
simulation of systems in which chemical change is important.
Recent advances in electronic structure calculation using plane-
wave methods has allowed the simulation of the dynamic
behavior of complex systems directly on the ground state
electronic surface.32 These methods, while providing much new
information on complex systems, are limited in their application.
Essentially all the first principles methods for ab initio dynamics
are based on plane wave solutions to the LSDA equations. For
these solutions to be practical the plane wave expansions must
be limited to the order of 500000 functions. For this to be case
the wave function must be sufficiently smooth. For many
elements this can be achieved by replacing the potential terms
leading to the fast variation in the wave functions by smooth
norm-conserving pseudopotentials. Pseudopotential methods are
widely used and for some systems have been shown to have
accuracies similar to all-electron LSDA methods.26 Unfortu-
nately, for some systems the atom electron interactions are so
strong that it is difficult to find a pseudopotential that will allow
a manageable plane wave solution. Important examples of such
systems are the atoms first row atoms on the right side of the
periodic table (O and F) and the transition metal elements. The
transition metal elements are particularly difficult because they
contain several length scales associated with the s, p, and d
solutions to the LSDA equations. A number of articles have
been published which address these problems.34,35

In this work we have studied the projected augmented wave
method, an approach which is related to pseudopotential
methods but takes a different path. In PAW method the rapidly
varying portion of the wave function is projected out using local
atomic basis set. The method, therefore, has some relation to
the local basis methods that are widely used in quantum
chemistry. The smooth remainder of the wave function is treated
with plane waves essentially in the same way as in pseudopo-
tential calculations. Since the local basis matrix elements can
be precomputed, the efficiency of the PAW method should be
similar to that of plane wave pseudopotential method. For large
plane wave basis sets the most time-consuming parts in PAW
method are the calculation of the local gradient (see (2.54)) and
wave function orthogonalization. The calculation of the local

TABLE 11: Structural Properties of Fe2 (7∆u) Molecule:
Experimental Values as Cited in Reference 3

R (au) w (cm-1)

this PAW 3.70 464
Gaussian9 3.69 497
Blöchl PAW7 3.69 441
pseudopotential2 3.84
exptl 3.53, 3.81 299.6

Figure 6. Molecular orbitals ordering for Cr dimer: squares correspond
to π state, filled and opaque circles toσ states, triangles toδ state.

[1σgπu
2 δg

22σgδu
2 πg

21σu]
v[1σgπu

22σgδg]
V

TABLE 12: Binding Energy of Fe2 (7∆u) Molecule
Calculated Using Different LSDA Methods

reference atoms PAW Gaussian29 Gaussian9 Blöchl7

spherical 4.49 4.38 3.99
nonspherical 2.74 2.89
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gradient scales asNaNbNgNe, whereNa number of atoms,Nb

number of basis function per atom,Ng number of plane waves,
and Ne number of electrons. This is similar in scaling to of
nonlocal pseudopotential calculation in plane wave pseudopo-
tential methods. The orthogonalization part scales asNe

2Ng.
Since Ng ∼ Na and Ne ∼ Na both, local gradient part and
orthogonalization will scale as third power of the number of
atoms. At this stage of the development our PAW code is
approximately 1.5 times slower than the highly optimized norm-
conserving pseudopotential code.

The main difference between pseudopotential and PAW
methods is that the latter is an all-electron method. No part of
the valence orbitals is ever discarded but rather treated in
different spaces. The local part of the Hamiltonian (see (2.52)
and (2.53)) through the dependence on the orbitals can dynami-
cally respond to the changes in environment. This should be
contrasted with the pseudopotential methods where the pseudo-
potential is a static frozen quantity, imported from the isolated
atom environment. The all-electron nature of the PAW method
is also invaluable in other than ground state applications such
excited state energies, polarizabilities, etc., which require the
knowledge of all-electron orbitals. The core orbitals in PAW
method are frozen but not ignored completely as typically done
in pseudopotential methods. Considering the nonlinear nature
of the exchange-correlation functional carrying the total density
(valence plus frozen core) can be important factor for some
systems.

Various approximations must be made to implement the PAW
method, e.g., (33), but according to the results that we have
presented in section 4 this does not impair the accuracy of PAW
calculations and the numbers produced are of the same qualify
as methods based on local expansions. For all the elements that
we have studied the size of the plane wave basis can be kept at
the practical level allowing efficient implementation in ab initio
dynamics. We believe that with improvements in efficiency the
PAW method should provide a very general and accurate
approach to the simulation of the complex materials.
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(7) Blöchl, P. E.Phys. ReV. 1994, B50, 17953.
(8) Car, R.; Parrinello, M.Phys. ReV. Lett 1985, 55, 2471.
(9) Castro, M.; Jamorski, C.; Salahub, D. R.Chem. Phys. Lett.1997,

271, 133.
(10) Delley, B.J. Chem. Phys.1990, 92, 508.
(11) Dreizler, R. M.; Gross, E. K. U.Density Functional Theory;

Springer-Verlag: New York, 1990.
(12) Holzwarth, N. A. W.; Matthews, G. E.; Dunning, R. B.; Tackett,

A. R.; Zeng, Y.Phys. ReV. 1997, B55, 2005.
(13) Holzwarth, N. A. W.; Matthews, G. E.; Tackett, A. R.; Dunning,

R. B. Phys. ReV. 1998, B57, 11827.
(14) Kawai, R. Private communication.
(15) Kresse, G.; Joubert, D.Phys. ReV. 1999, B59, 1758.
(16) Painter, G. S.; Averill, F. W.Phys. ReV. 1982, B26, 1781.
(17) Painter, G. S.J. Phys. Chem.1986, 90, 5530.
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